
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

ARCHITECTURAL DESIGN AND PROTOTYPING OF A
WEB-BASED WAR GAME SIMULATION FOR

CAMPAIGN PLANNING EXERCISES

by

Antonios Chalakatevakis

September 2000

Thesis Advisor:
Co - Advisor:

Man-Tak Shing
Leroy A. Jackson

Approved for public release; distribution is unlimited

: BHQ $TjMJTf mmsmss) 4

20001026 148

REPORT DOCUMENTATION PAGE | Form Approved 0MB No 0704.0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the
collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 2000

3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE: ARCHITERURAL DESIGN AND
PROTOTYPING OF A WEB-BASED WAR GAME SIMULATION
FOR CAMPAIGN PLANNING EXERCISES

5. FUNDING NUMBERS

6. AUTHOR(S)

Antonios Chalakatevakis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES: The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

ABSTRACT (maximum 200 words)

The Campaign Planning Exercise (CAMPEX) War Game is being used for the training of the students of the Air
War College in the area of the Air Campaign Planning and the Ground Forces Deployment. The CAMPEX life cycle
started in 1986 and the last version was released in 1994. Microsoft Basic Version 7.10 Professional Development
System was used for its development. CAMPEX was not designed or developed with the objected-oriented technique, so
further extension and its use as component for Distributed Components Applications is not feasible.

TRADOC Analysis Center (TRAC) of Monterey plans to use a collection of old War Games as Components of a
Distributed Embedded Application. The CAMPEX Employment Module is the first War Game that will form one of the
components of this application, so the redesign and implementation of CAMPEX Employment Module with object-
oriented technique is necessary. This thesis examines the distributed component architectures available to support the
Distributed Embedded Application, re-engineers the CAMPEX Employment Module into an object-oriented design, and
validates its requirements via a prototype developed using ACCESS2000. The new design will be the basis for
reengineering the other war game planning software for the Air War College.

14. SUBJECT TERMS
Battlespace Environments, Distributed Components Architecture, Object-Oriented Design,
Modeling and Simulation.

15. NUMBER OF PAGES

195

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

11

Approved for public release; distribution is unlimited

ARCHITECTURURAL DESIGN AND PROTOTYPING OF A WEB-BASED
WAR GAME SIMULATION FOR CAMPAIGN PLANNING EXERCISES

Antonios Chalakatevakis
Major, Hellenic Army

Hellenic Military Academy, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2000

Author:

Approved by:

Antonios Chalakatevakis

Map^TTak Shing, Thesis Advisor

Leroy A. JacksonVco-Advisor

KLCA
Dan Boger, Chairm^

Department of Computer Science

m

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

The Campaign Planning Exercise (CAMPEX) War Game is being used for the

training of the students of the Ar War College in the area of the Ar Campaign Planning

and the Ground Forces Deployment. The CAMPEX life cycle started in 1986 and the last

version was released in 1994. Microsoft Basic Version 7.10 Professional Development

System was used for its development. CAMPEX was not designed or developed with the

objected-oriented technique, so further extension and its use as component for Distributed

Components Applications is not feasible.

TRADOC Analysis Center (TRAC) of Monterey plans to use a collection of old

War Games as Components of a Distributed Embedded Application. The CAMPEX

Employment Module is the first War Game that will form one of the components of this

application, so the redesign and implementation of CAMPEX Employment Module with

object-oriented technique is necessary. This thesis examines the distributed component

architectures available to support the Distributed Embedded Application, re-engineers the

CAMPEX Employment Module into an object-oriented design, and validates its

requirements via a prototype developed using ACCESS2000. The new design will be the

basis for reengineering the other war game planning software for the Air War College.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. GENERAL 1

B. MOTIVATION 3

C. OBJECTIVES 4

D. THESIS ORGANIZATION 4

E. DISTRIBUTED COMPONENTS ARCHITECTURE 7

A. THE PROBLEM DESCRIPTION 7

B. REQUIREMENTS AND CONSTRAINTS 7

C. DISTRIBUTED COMPONENTS SERVICES 9

D. EXISTING PARTIAL SOLUTIONS 10

E. EXISTING SOLUTIONS 12

F. COMPARISON AMONG THREE ARCHITECTURES 29

m. SOFTWARE REQUIREMENTS SPECIFICATION 31

A. OVERVIEW 31

B. CUSTOMERS 31

C. GOALS 31

D. USER CHARACTERISTICS 32

E. GENERAL CONSTRAINTS 32

F. ASUUMPTIONS AND DEPENDENCIES 33

G. SYSTEM FUNCTIONS 33

H. SYSTEM ATTRIBUTES 41

vii

I. USE CASES 42
1. High Level Use Cases 42
2. CAMPEX Employment Module Use Case Diagram 49

J. RANKING USE CASES 50

K. CONCEPTUAL MODEL 52

IV. SOFTWARE DESIGN SPECIFICATION 53

A. INTRODUCTION 53
1. Purpose 53
2- Scope 53
3. Definitions, Acronyms, and Abbreviations 53

B. THE SYSTEM ARCHITECTURE 54
1. The Detailed Architecture Diagram 54

C. Object/Class Diagrams 60
1. Object Diagram 60
2. Classes-Objects Attributes and Operations 61

V. PROTOTYPE 79

A. PURPOSE 79

B. PROTOTYPE IMPLEMENTATION 79
1. General 79
2. Database Design 80

C. User Manual 91
1. Installing CAMPEX Employment Module Prototype 91
2. Running the CAMPEX Employment Module Prototype 92
3. CAMPEX Employment Module Initial Screen 92
4. "New Student" 93
5. "Select Student" 94
6. "Start Employment Module" 95
7. "Select to See the Program Reports" 96
8. "Select to Continue with Program" 97
9. "ATO Selection" !""."!"!!Ü97
10. "Select an ATO"] 98
11. "NewATO" 1ZZ98
12. "Main Menu Screen" 99
13. "Options" !!!!!!!!""""."!!!"!!."!!l00
14. "Report Management" 101

viii

15. "Area Map" 102
16. "Change ATO" , 103
17. "Blue Basing Summary" 103
18. "Sorties Available" 103
19. "Analysis" 104
20. "ATO Planning" 104
21. "20 Top Priority Targets" 106
22. "Plan Edit Missions" 106
23. "Enter or Edit Flight" 108
24. "Flight Data" 109
25. "Estimated Results Choices" 110
26. "Estimated Results" Ill
27. "Flights without Sorties" 112
28. "Daily Summaries" 112
29. "Cancel Mission or Package" 113
30. "Logistic Requirements" 114
31. "Fly ATO Missions" 114
32. "Ground Forces Deployed" 114
33. "Intel and Results" 115

VI. CONCLUSIONS 117

APPENDK A - USE CASES 119

USE CASE (Ul): Start Employment Module..... 119

USE CASE (U2): STUDENT INFO 122

USE CASE (U3): LOAD AN ATO 125

USE CASE (U4): Manage an ATO 126

USE CASE (U5): DESCRIBE THE 20 TGTS WITH HIGHEST PRIORITY.. 129

USE CASE (U6): PLAN AN ATO 130

USE CASE (U7): FLY AN ATO 133

USE CASE (U8): INITIAL INFORMATION 134

USE CASE (U9): ESTIMATED RESULTS 136

USE CASE (U10): ACTUAL RESULTS 138

USE CASE (Uli): MAP 140

ix

USE CASE (U12): SEND EXERCISE 141

APPENDIX B - SYSTEM SEQUENCE DIAGRAMS 143

Select Student 143

Add Student 144

Start Employ 145

Select ATO 146

NewATO 147

Copy an Existing ATO 14g

Erase ATO 149

20 Targets with Highest Priority 150

Plan ATO Enter a New Mission 151

Cancel Mission 152

Cancel Missions of a Package 152

Fly ATO 153

Estimated Results 154

Missions Without Sorties 154

Initial Information - Daily Summary 155

Initial Information - Logistics Requirements 155

Initial Information - Blue Basing Summary 156

Initial Information - "Recce for Targets" 156

Initial Information - "Analysis" 157

Initial Information - "Sorties Available" 157

x

Actual Results - "Cumulative Summary" 158

Actual Results - "Enemy Over Blue Bases" 159

Actual Results - "Ground War Summary" 159

Actual Results - "Measures of Merit" 160

Actual Results - "Yesterday Losses By Aircraft Type" 161

Actual Results - "Yesterday Losses By Task Type" 162

Map 162

SendATO 163

APPENDIX C ABBREVIATIONS ACRONYMS DEFINITIONS 164

BIBLIOGRAPHY 168

INITIAL DISTRIBUTION LIST 171

XI

THIS PAGE INTENTIONALLY LEFT BLANK

Xll

LIST OF FIGURES

Figure 1. Client Using COM Object through an Interface Pointer 14

Figure 2. Three Methods for Accessing COM Objects 15

Figure 3. Cross-Process Communication in COM 17

Figure 4. Creating a COM Object Pointer 18

Figure 5. CORBA Architecture Layers 20

Figure 6. Detailed CORBA Architecture 21

Figure 7. JINI Architecture Segmentation 28

Figure 8. Use Cases Diagram 50

Figure 9. Conceptual Model 52

Figure 10. Detailed Architecture Diagram 54

Figure 11. CAMPEX Employment Module Object 60

Figure 12. Entity-Relation Diagram 80

Figure 13. Return and Exit 92

Figure 14. Initial Screen 93

Figure 15. New Student 94

Figure 16. Select Student 95

Figure 17. Choose to see Reports or Not 95

Figure 18. Introductory Report 96

Figure 19. Ground Combat Units 97

Figure 20. ATO Selection 98

Figure 21. Enter a New ATO 99

Figure 22. Main Menu 100

xiii

Figure 23. Options Menu 101

Figure 24. Report Management 102

Figure 25. Area Map 102

Figure 26. Blue Basing Summary 103

Figure 27. Sorties Available 103

Figure 28. Analysis 104

Figure 29. Menu "ATO Planning" 104

Figure 30. List of 20 Targets with Highest Priority 106

Figure 31. Flight Categories 107

Figure 32. Assigned Flights By Category 108

Figure 33. Enter or Edit a Flight 109

Figure 34. Input or Update Flight Data HO

Figure 35. Estimated Results Choices 111

Figure 36. Estimated Results 111

Figure 37. Flights without Sorties 112

Figure 38. Daily Summary H2

Figure 39. Cancel Mission or Missions'Package 113

Figure 40. Logistics Requirements 114

Figure 41. Menu Intel Results H5

Figure 42. Sample Intel Report "Measures of Merit" 116

Figure 43. Sequence Diagram "Select a Student" 143

Figure 44. Sequence Diagram "Add Student" 144

xiv

Figure 45. Sequence Diagram "Start an ATO" 145

Figure 46. Sequence Diagram "Select an ATO" 146

Figure 47. Sequence Diagram "New ATO" 147

Figure 48. Sequence Diagram "Copy an Existing ATO" 148

Figure 49. Sequence Diagram of "Erase an ATO" 149

Figure 50. Sequence Diagram "20 Highest Priority Targets" 150

Figure 51. Sequence Diagram "Plan or Edit Mission" 151

Figure 52. Sequence Diagram "Cancel Mission" 152

Figure 53. Sequence Diagram "Cancel Package of Missions" 152

Figure 54. Sequence Diagram "Fly an ATO" 153

Figure 55. Sequence Diagram "Estimated Results" 154

Figure 56. Sequence Diagram "Flights Without Sorties" 154

Figure 57. Sequence Diagram "Daily Summary" 155

Figure 58. Sequence Diagram "Logistic Requirements" 155

Figure 59. Sequence Diagram "Blue Basing Summary" 156

Figure 60. Sequence Diagram "Recce for Targets" 156

Figure 61. Sequence Diagram "Analysis" 157

Figure 62. Sequence Diagram "Sorties Available" 157

Figure 63. Sequence Diagram "Cumulative Summary" 158

Figure 64. Sequence Diagram "Enemy over Blue Bases" 159

Figure 65. Sequence Diagram "Ground War Summary" 159

Figure 66. Sequence Diagram "Measures of Merit" 160

Figure 67. Sequence Diagram "Yesterday Losses By Aircraft Type" 161

xv

Figure 68. Sequence Diagram "Yesterday Losses By Task Type" „ 162

Figure 69. Sequence Diagram of "Map" 162

Figure 70. Sequence Diagram "Send ATO" 163

xvi

LIST OF TABLES

Table 1. System Functions 41

Table 2. System Attributes 41

Table 3. Ranking Use Cases 51

Table 4. Class Employ-Attributes 62

Table 5. Class Employ-Operations 66

Table 6. Class Student-Attributes 66

Table 7. Class Student-Operations .' 66

Table 8. Class ATO-Attributes 67

Table 9. Class ATO-Operations 67

Table 10. Class ATODay-Attributes 67

Table 11. Class ATODay-Operations 68

Table 12. Class Mission-Attributes 69

Table 13. Class Mission-Operations 70

Table 14. Class Target-Attributes 71

Table 15. Class Target-Operations 71

Table 16. Class Category-Attributes 71

Table 17. Class Subcategory-Attributes 72

Table 18. Class Group-Attributes 72

Table 19. Class Group-Operations 72

Table 20. Class Aircraft-Attributes 73

Table 21. Class Aircraft-Operations 73

xvii

Table 22. Class Sector-Attributes 74

Table 23. Class Sector-Operations 74

Table 24. Class Task Type-Attributes 75

Table 25. Class Task Type-Operations 75

Table 26. Bomb Type-Attributes 75

Table 27. Class Map-Attributes 76

Table 28. Class Map-Operations 76

Table 29. Class Report-Attributes 76

Table 30. Class Report-Operations 77

Table 31. Entities - Relations Attributes 90

xvm

I. INTRODUCTION

A. GENERAL

There has been continuous progress in the development of computers over the

past four decades. The results are more impressive by any measure in the state of

hardware than in the state of software. From the beginning hardware developers have had

a theoretical basis that comes from other sciences, like mathematics, physic, mechanics,

etc. Also, the hardware developers borrowed and applied standard methods from other

engineering disciplines for design and manufacturing. In contrast, software developers

initially relied primarily upon human imagination, invention, and ingenuity. This lack of

an engineering approach has produced legacy software applications that cannot be

supported any longer.

As the science of software development slowly evolved into a distinct engineering

discipline, software engineers established the processes, the techniques and the rules that

govern the development of software systems.

The process to develop a software system usually consists of the following

phases1: Requirements Analysis, Functional Specification, Architectural Design,

Implementation and Evolution. In the nineties the object-oriented methodology has

emerged as the most popular method because it supports the rule that can be described by

the maxim, "reduce, reuse recycle". The object-oriented methodology increases

efficiency, reduces development time and decreases the cost of software products.

1 Berzins and Luqi in their book "Software Engineering with Abstractions" 1990 chapter 1 p 6 about the
Software Development Process

1

Software engineering has also changed the process of software evolution and

maintenance. The old approach "to maintain a software system for period of time and

then to replace it with an complete new system" when further evolution is not feasible is

not an efficient solution. It is too costly to lose the assets that an existent and working

system offers, including all the previous work that went into the requirements analysis

phase. Also, users have verified the existent system over time and have gained

knowledge about the system's operations through years of maintenance and development.

To be efficient, the evolution technique for an existent system must respect that the

current system is valuable even though it is increasingly difficulty to extend. Therefore,

the new approach must respect the assets of the old system and developers should salvage

any useful parts from the old system and change only the parts that must be changed.

The most common problem when re-engineering old systems is that they are not

implemented according to modern, evolvable methods like the object-oriented design

techniques; however, the developers can still use the requirements specification of the old

systems in the first phase of the redesign. So the designers must retrieve the requirements

specification from the old system and document them with object-oriented techniques. In

addition, the most effective approach to redesign is to implement a prototype. In this way,

the designer can verify the correctness of the requirements specification and design

through reviews with the customer.

Current software engineering techniques are well supported by commercial-off-

the-shelf (COTS) products. Today COTS products are increasingly important and highly

economical tools for organizations to explore reengineering opportunities and strategies.

The ultimate goal is to reengineer the old system using object-oriented techniques that

allows the concurrent evolution of software via component-based development.

B. MOTIVATION

The TRADOC Analysis Center of Monterey, California plans to redesign and re-

implement the Campaign Planning Exercises (CAMPEX) discussion war game. The

CAMPEX2 is a software system that was implemented by the Air War College to provide

students the opportunity to test their understanding of strategy, leadership, international

security, National Security Decision Memorandums (NSDM), General Purpose (GP)

forces, unified commands, and joint fundamentals. The current version of the CAMPEX

system consists of two modules, the "Deployment" and the "Employment". In the

"Deployment" module the student deploys joint forces and in the "Employment" module

he employs the forces.

The CAMPEX system lifecycle began in 1986 and the current version (with ID

8.93) was released in 1994. Because CAMPEX is still used today, we can assume that it

satisfies most requirements of the Air War College. Moreover, we can conclude that the

system requirements and the algorithms and other functions of CAMPEX have been

verified in practice, because the CAMPEX was developed, maintained, and used by Air

War College personnel. CAMPEX was implemented in the Microsoft Basic Professional

Development System Version 7.10, and the object-oriented techniques were not used for

2 Air War College in the CAMPEX User Manual
3 Air War College Source Code of CAMPEX last version

its design. Also, a serious problem for further evolution of CAMPEX is the lack of

documentation for any phase of its development.

An important constraint that must be satisfied when reengineering a current

software system is the available hardware. Today the user has PC's with greater

processing power and data storage capacity that often operate on a high capacity network.

The reengineering of CAMPEX must account for this computing environment.

The final factor that must be considered when reengineering CAMPEX is the

High Level Architecture (HLA) for distributed simulations. The U.S. Department of

Defense DoD) mandates use of the HLA in new simulations and the retrofit of legacy

simulations by 2001.

C. OBJECTIVES

This thesis describes the reengineering of the CAMPEX "Employment" Module

using object-oriented techniques with respect to the current user's needs in combination

with the current available hardware. The secondary goal is preparation for High Level

Architecture compliance should the user decide to distribute CAMPEX over the network.

So the primary objectives of my work were twofold: 1) research in the area of the

Distributed Objects Architectures and 2) analysis and redesign of the CAMPEX

"Employment" module with object-oriented techniques and verify the design with a small

prototype. The prototype must work in the Microsoft Windows environment and allows

user to run some of the CAMPEX procedures through Internet.

D. THESIS ORGANIZATION

Chapter II provides:

background on Distributed Objects Architectures,

high level requirements for the Distributed Components,

a brief description of the partial and "complete" existent solutions in this area,

the advantages and disadvantages of each solution, and

the common characteristics and differences.

Chapter El provides the requirements analysis and functional specification of

CAMPEX Employment that results from reverse engineering the current version. The

requirements analysis and functional specification are documented using Unified

Modeling Language (UML) notation.

Chapter IV describes the new design and architecture of the new CAMPEX using

the UML methodology and notation. The existing CAMPEX algorithms and functions are

the basis for the design of the object interactions because the Air War College has already

verified them in practice.

Chapter V presents the prototype implementation. The prototype is implemented

with ACCESS-2000 and Visual Basic. Chapter V contains the basic database design,

queries and forms. Moreover, this chapter offers a "User Manual" that allows the user to

test and use the prototype easily.

Chapter VI summarizes the key elements of the thesis, provides observations

about the difficulties and lessons learned, and provides insights and recommendations for

future work to apply the selected Distributed Objects Architecture and to re-implement

the entire CAMPEX.

THIS PAGE INTENTIONALLY LEFT BLANK

II. DISTRIBUTED COMPONENTS ARCHITECTURE

A. THE PROBLEM DESCRIPTION

Even after many years the state of the art and science in software development is

not as satisfactory as that in hardware development. Different vendors have developed

numerous remarkable applications using various methods, computer languages, and

platforms. The exploitation of all these old applications in combination with new

applications under development on different types and configured machines that run over

Internet poses one of the biggest challenges in the software engineering today.

B. REQUIREMENTS AND CONSTRAINTS

This section addresses the high-level requirements and constraints to solve the

problem posed in the previous section. First the object-oriented methodology for

software implementation comprises a requirement for new applications and a constraint

for existing applications. This general requirement4 is that

• the applications must consist of components,

• the components should be characterized by high cohesion and loose coupling,

• the components should be developed in accordance with object-oriented

principles (encapsulation, polymorphism and inheritance), and

• the components should communicate through messages.

4 Reaz Hoque and Tarun Sharma in their book "WEB Components" 1998 chapter 1 p 7 what are the
Distributed Objects

The second requirement is to cross network boundaries. The new architecture

must allow the users to utilize applications that consist of components that can be

distributed on different machines on WANs or LANs. This requirement demands that the

application access the network in standard ways and expand its address space to the entire

network effectively.

The third requirement is that the components should be programming language

independent. That is, components that are developed in different programming languages

be able to interoperate in a distributed system. At the same time the user must be able to

choose a unique tool for the creation and the integration of these heterogeneous

components.

The fourth requirement is to cross the platform boundaries. The new architecture

must allow the old legacy applications as well as the new ones to run on machines of

different type or configuration. In other words, machines and their operating system

should not block communication among the components of the distributed application.

The fifth requirement is to satisfy the "reduce, reuse, recycle" dictum. This

requires that the application be reusable as a whole or in parts (patterns, components or

objects). The application must be designed so that it can be deployed in an environment

with diminished resources and function in a reduced, but useful, capacity. Finally, it

must provide components and design features that can be recycled for the production of

new applications.

The sixth and last requirement is that the application must offer a satisfactory

level of performance and reliability. This constraint follows directly from the maxim to

"reduce". "Reduce" excludes solutions that increase the implementation time and

8

complexity. This excludes many popular solutions that are used today. Examples include

the 4GL languages with fat clients, the development of low level drivers and new

network protocols for the crossing of network boundaries, and the use of different tools

with each programming language for breaching the programming language barriers.

A final constraint is that the new system should demand no new resources.

C. DISTRIBUTED COMPONENTS SERVICES

Today many vendors have software development solutions that seem to satisfy all

these requirements. These solutions are variants of the Distributed Components Based

Architecture. All the vendors contend that they have realized the early dream of the

software community for distributed computing that properly uses all the capabilities of

the current hardware.

Distributed architectures must offer the following services5:

• naming service to provide a mechanism for locating distributed components in

a system,

• monitor service to watch the whole system for correctness and alert if

something wrong happens to an operator,

• listening service to ensure that users of the distributed components have the

appropriate privileges,

• persistence mechanism to uniformly save, update, and restore an object's state

using a persistent data store,

5 SUN Microsystems in JINI Architecture Specification version 1.0.1 1999 about Distributed Components
Services

• transaction support mechanism to ensure that a transaction is completed or

aborted in its entirety whenever work is performed. (Typically a transaction

defines an atomic unit of work in an enterprise system. A distributed

transaction is a single unit of work that spans multiple computers.)

• security mechanisms to ensure that communication from authorized users to a

distributed object is secure,

• messaging support to provide an asynchronous programming model, as

opposed to the typical request-reply model. (There are many types of

applications that require messaging. An example is an application in which the

client and server are required to run in different times.)

• distributed services to automatically deallocate distributed objects when they

are no longer being used by their clients, and

• resource management to manage distributed objects in such a way as to

maximize scalability and support a large number of clients interacting with a

large number of distributed objects in short period of time.

D. EXISTING PARTIAL SOLUTIONS

Today there are many suggestions from different vendors. Some of these

suggestions tackle the problem of the distributed computing by trying to satisfy all the

requirements and others by trying primarily to satisfy an individual requirement.

The following techniques suggest solutions for various requirements of the distributed

computing problem:

10

The Remote Procedure Call Mechanism satisfies the requirement to cross network

boundaries. It is probably the most popular technique for crossing network barriers. At

first sight it seems well suitable for distributed computing since it allows one

application to make functions calls through the network. However, if we examine

RPC deeper we find that RPC does not allow the objects to change state. Adding this

capability has a very large performance cost.

Sockets mechanisms7 are another way to cross network barriers. This solution has

many advantages, but it usually demands low-level network programming. To be

useful for distributed computing architectures this solution should offer network

interfaces that hide all the unnecessary low level networking details.

o
Interpreted Languages can solve the problem of the crossing operating system (OS)

boundaries. Since this kind of languages is not compiled to a specific binary format,

they can be reused and run in source code format on multiple machines. The drawback

of this solution is the lack of speed because interpreted code is typically hundreds of

times slower than the compiled code; also, the interpeter may not exists for some

platforms.

Binary Compatibility Layers can be used to cross OS barriers. This solution provides a

layer of code on top of the OS that runs binary files compiled for a different OS. This

solution is feasible if binary compatibility layers exist for all the OS's. One problem

with this solution is that it demands a lot of work from programmers. Another

6 Gopalan Suresh Raj in his book "A Detailed Comparison of CORBA, DCOM and JAVA/JINI
7 Reaz Hoque and Tarun Sharma in their book "WEB Components" 1998 chapter 1 p. 14 what are the
Distributed Objects

11

problem is that most applications use more than one OS layer, so the OS vendor must

construct a new binary compatibility layer every time another OS layer is used.

Language Binding can cross language barriers. The biggest weakness of this

technique is that users must learn how the solution works in different programming

environment. Consequently, it is not standard and can delay the implementation

process.

Another way to cross language barriers is a development environment that can

compile to multiple target platforms. But this solution has a big drawback too. It

demands a binary distribution.

E. EXISTING COMPLETE SOLUTIONS

The previous section discussed the most common partial solutions for distributed

computing and emphasized their drawbacks. This section describes standard complete

solutions.

The Distributed Component Object Model (DCOM) is Microsoft's solution for

distributed computing. DCOM treats the problem of the distributed components as two

different subproblems. The first subproblem9 is the component architecture that describes

component packaging and cross language interoperability. The second sub-problem is

communication among components over the network and support for remote method

invocation.

Reaz Hoque and Tarun Sharma in their book "WEB Components" 1998 chapter 1 p 15 what are the
Distributed Objects

9 Software Engineering Institute DCOM Architecture Overview, 10 Jan 97, p.2 by Ed Morris and Emil
Litvak

12

COM, an ancestor of the DCOM and now a part of DCOM, allows inter-process

communication. COM supports interoperability and reusability of distributed objects by

allowing developers to build systems by assembling reusable components from different

vendors. By applying COM to build systems from preexisting components developers

hope to reap benefits like maintainability and adaptability.

COM defines an application-programming interface (API) for creating

components to use in custom applications and to allow components to interact. However,

the interacting components must adhere to a binary structure specified by Microsoft. As

long as they adhere to this binary structure, components written in different languages

can interoperate.

The DCOM extends the COM by allowing network-based component interaction.

While COM processes can run on the same machine in different address spaces, the

DCOM extension allows processes to be spread across a network. With DCOM,

components operating on a variety of platforms can interact as long as DCOM is

available within the environment. COM and DCOM represent "low-level" technology

that allows components to interact. Microsoft provides two higher-level application

services, OLE and ActiveX, which are built on top of COM and DCOM. OLE provides

services such as object "linking" and "embedding" that are used in the creation of

compound documents (documents generated from multiple tool sources). ActiveX allows

components to be embedded in Web pages.

COM is a binary compatibility specification and associated implementation that

allows clients to invoke services provided by COM-compliant components (COM

objects). As shown in Figure 1 services implemented by COM objects are exposed

13

through a set of interfaces that represent the only point of contact between the clients and

the object.

m I I I I I I 1 ll'ITL

KH1

tjiVi."i'i'ui"i*i*i'i*i*i*i"h"idhr^

Irterface
Pointer

Figure 1. Client Using COM Object Through an Interface Pointer (Source:
Software Engineering Institute DCOM Architecture Overview, 10 Jan 97, p.2.)

COM defines a binary structure for the interface between the client and the object.

This binary structure provides the basis for interoperability among software components

written in arbitrary languages. As long as a compiler can reduce language structures

down to this binary representation, the implementation language of the client is

independent from the run-time binary representation of the object. Thus, COM objects

and clients can be coded in any language that supports Microsoft's COM binary structure.

An interface provides a collection of related methods. COM objects and interfaces

are specified using Microsoft Interface Definition Language (IDL), an extension of the

DCE Interface Definition Language standard. To avoid name collisions, each object and

interface must have a unique identifier.

Every COM object runs within of a server. A single server can support multiple

COM objects. There are three ways in which a client can access COM objects provided

by a server:

14

Client Process

Client
Application

Local Server Process

Remote Server

Figure 2. Three Methods for Accessing COM Objects (Source: Software
Engineering Institute DCOM Architecture Overview, 10 Jan 97, p.4.)

• In-process server: The client can link to a library containing the server

directly. The client and server execute in the same process. Communication is

accomplished through function calls.

• Local Object Proxy: The client can access a server running in a different

process yet on the same machine through an inter-process communication

mechanism. This mechanism is actually a lightweight Remote Procedure Call

(RPC).

15

• Remote Object Proxy: The dient can access a remote server running on

another machine. The network communication between client and server is

accomplished through DCE RPC. The mechanism supporting access to remote

servers is called DCOM.

If the client and the server are in the same process, the sharing of data between

them is simple. However, when the server process is separate from the client process, as

in a local server or remote server, COM must format and bundle the data in order to share

it. This process of preparing the data is called marshalling. Marshalling is accomplished

through a "proxy" object and a "stub" object that handles the cross-process

communication details for any particular interface. COM creates the "stub" in the object's

server process and has the stub manage to the real interface pointer. Then COM creates

the "proxy" in the client's process, and connects it to the stub. Then the proxy supplies the

interface pointer to the client.

The client calls the interfaces of the server through the proxy, which marshals the

parameters and passes them to the server stub. The stub unmarshals the parameters and

makes the actual call inside the server object. When the call is completed, the stub

marshals return values and passes them to the proxy, which in turn returns them to the

client. The same proxy/stub mechanism is used when the client and server are on

different machines. However, the internal implementation of marshalling and

unmarshalling differs depending on whether the client and server operate on the same

machine (COM) or on different machines (DCOM). Given an DDL file, the Microsoft

IDL compiler can create default proxy and stub code that performs all necessary

marshalling and unmarshalling.

16

Process
Boundary

f dient *)

C **»*)

jijT Channel J

0

:;:iq|(^;tii|3fj^^

RPC Runtime
;

f Transport \

(^ Object "}

c Stub

K

D
Channel

i:i§i^:i^ä!§IÖiii

C RPC Runtime
)

-*(Transport j

Figure 3. Cross-Process Communication in COM (Source: Software Engineering
Institute DCOM Architecture Overview, 10 Jan 97, p.5.)

All COM objects are registered with a component database. As shown in Figure

4, when a client wishes to create and uses a COM object:

• it invokes the COM API to instantiate a new COM object,

• COM locates the object implementation and initiates a server process for the

object,

• the server process creates the object and returns an interface pointer at the

object, and then

• the client can interact with the newly instantiated COM object through the

interface pointer.

17

a lent
AppHcatioi

4) Call interface
mem bers

1) "Create
Object'

F3) Get object
interface pointer
return to Client

Object

«J6I¥ or

J

COM 2) Locate
Implementation

Figure 4. Creating a COM Object Pointer (Source: Software Engineering Institute
DCOM Architecture Overview, 10 Jan 97, p.4.)

COM includes interfaces and API functions that expose operating system services

as well as other necessary mechanisms for a distributed environment such as naming and

events.

DCOM advantages are:

• Microsoft supports DCOM so it already has many users.

• DCOM and the other Microsoft tools for implementing components usually

have a low price.

• The components that DCOM integrates can be implemented in many

programming languages so DCOM succeeds in crossing the language

boundaries.

• DCOM offers an interface that crosses network boundaries in a standard and

simple way.

18

• DCOM is a robust application. It is easy for the programmers to learn to use

the DCOM (though one must be an expert in areas like distributed systems

design, multi-threaded applications, and networking to implement an

embedded system with DCOM).

Disadvantages of DCOM are:

• Once an interface is defined, it should not be changed. New methods should

not be added and existing methods should not be modified. This interface

restriction is not enforced, but it is a rule that component developers should

follow.

• DCOM depends on the Windows Operating System. This is its main

disadvantage. DCOM does not satisfy the requirement for crossing platform

boundaries.

• Older legacy applications are not easy to integrate with a system that uses

only Windows.

• Because COM and DCOM are based on a native binary format, components

written to these specifications are not really platform independent.

• DCOM is not standard for many vendors. For example Netscape does not

support ActiveX.

• DCOM cannot guarantee high performance.

• DCOM does not support security, but there are external packages for security

support.

• DCOM does not support applications with real-time requirements and cannot

guarantee reliability to applications.

19

The Common Object Request Broker Architecture10 (CORBA) is the Object

Management Group's (OMG) solution. OMG is an industry group with over six hundred

member companies representing computer manufacturers, independent software vendors,

and a variety of government and academic organizations. CORBA is a consortium

standard, not a "formal" IEEE, ANSI or ISO standard.

The vision behind CORBA is that distributed systems are conceived and

implemented as distributed objects. The interfaces to these objects are described in a

high-level, architecture-neutral specification language that supports object-oriented

design abstraction. CORBA supports distributed systems that feature rapid development,

maintainability and adaptability.

Application Objects

ORB

CORBAServices CORBAFacilities

Figure 5. CORBA Architecture Layers (Source: Software Engineering Institute
CORBA Architecture Overview, 10 Jan 97, p.2.)

Logically the CORBA consists of 4 layers (Figure 5):

• The Object Request Broker (ORB) layer is the core of CORBA and it handles

requests for objects.

• The CORBA Common Object Services Layer or CORBAServices supplies

the object support service. This layer is fundamental when building non-trivial

distributed applications. These services currently include asynchronous event

10
Kurt Wallnau in his technical paper "Common Object Request Broker Architecture"

20

management, transactions, persistence, externalization, concurrency, naming,

relationships, and lifecycle management.

• CORBA Common Facilities Layer or CORBAFacilities has two sub-layers,

the horizontal and the vertical. They may be useful for some distributed

applications, but are not as universally applicable as CORBAServices. These

facilities include user interface, information management, system

management, task management, and a variety of "vertical market" facilities in

domains such as manufacturing, distributed simulation, and accounting.

The ApplicationObjects Layer is an extension of the vertical sub-layer of

CORBAFacilities layer. Developers must implement this layer for their applications

because CORBA offers no standard solution.

C

Dynamic
invocation

I
OMedimp.«,«^«,) Client j (OtiectimpicBi«

^^H ;—^ DL Dynamic
IDL ORB SMeter» Skeleton
State Htrfacc FTTTTTTTTTTTJ mmnggl

fflffl

Object Adaptor

nmnnii
CRBCcre

mmm faceidertical feral ORB implanentalior»
Therearestui» and skei (torn for eachobfecttype

nmnmni ORBimplementaBon-itpendertinterface
POOOOCH Th«remaybcswe»alolii«cta<Japtor3

Figure 6. Detailed CORBA Architecture (Source: Software Engineering Institute
CORBA Architecture Overview, 10 Jan 97, p.3.)

ORB Core is the CORBA runtime infrastructure. The interface to the ORB Core

is not defined by CORBA. It is proprietary to a particular vendor. ORB Interface is a

21

Standard interface (defined in DDL) to functions provided by all CORBA-compliant

ORBs.

The IDL processor generates IDL stubs for each interface defined in IDL. Stubs

hide the low-level networking details of object communication from the client while

presenting a high-level, object type-specific application programming interface (API).

Dynamic Invocation Interface (DII) is an alternative way for clients to access

objects. While stubs provide an object type-specific API, DII provides a generic

mechanism for constructing requests at' run time. An interface repository allows some

measure of type checking to ensure that a target object can support the request made by

the client.

Object Adaptor provides extensibility of CORBA-compliant ORBs to integrate

alternative object technologies into the OMA. For example, adaptors may be developed

to allow remote access to objects that are stored in an object-oriented database. Each

CORBA-compliant ORB must support a specific object adaptor called the Basic Object

Adaptor (BOA). The BOA defines a standard API implemented by all ORBs.

IDL Skeletons are the server-side analogue of IDL stubs. IDL skeletons receive

requests for services from the object adaptor and call the appropriate operations in the

object implementation.

Dynamic Skeleton Interface (DSI) is the server-side analogue of the DE. While

IDL skeletons invoke specific operations in the object implementation, DSI defers this

Jason Pritchard in his book "COM and CORBA Side by Side" Jun 1999 p. 50

22

processing to the object implementation. This is useful for developing bridges and other

mechanisms to support inter-ORB interoperation.

Advantages of CORBA are:

• CORBA is a standard architecture for Object Request Brokers. CORBA

compliant vendors support portability and interoperability across different

programming languages, hardware platforms, operating systems, and ORB

implementations.

• When combined with the Object Management Architecture, CORBA can

result in distributed systems that can be rapidly developed and can reap the

benefits of CORBA like maintainability and adaptability.

• CORBA can cross network, operating systems and programming language

boundaries.

• CORBA can support with the current addition of Real-Time Event Service

source and type base filtering, event correlations, real-time dispatching and

UDP/IP multicast communication. Also with the addition of Scheduling

Service, CORBA can support static rate monotonic scheduling and dynamic

maximum urgency first scheduling to assign priorities and validate

schedulability. These are services that have prevented CORBA from

supporting real-time applications and guaranteeing high performance in the

past.

• CORBA makes the development of distributed applications easier than with

previous technologies.

23

• CORBA is a mature product with a large and growing number of CORBÄ

implementations available in the marketplace including implementations from

most major computer manufacturers and independent software vendors.

The disadvantages of CORBA are:

• CORBA is a complex specification and considerable effort is required to

develop expertise in its use.

• CORBA ORB's vary in prices from vendor to vendor and some ORB's are

very expensive.

• There is no organization to test in a formal way all aspects of a CORBA

implementation, so little information is available.

• Changes to the CORBA specifications while technically justified have

resulted in unstable ORB implementations.

• DDL is the "least-common denominator". It does not fully exploit the

capabilities of programming languages especially in the definition of abstract

data types.

• CORBA specifies only a minimal range of security mechanisms; more

ambitious and comprehensive mechanisms have not yet been adopted by the

OMG.

JINI is Sun Microsystems' distributed computing solution. JINI is a distributed

system that allows a group of computing devices connected by an Intranet or Internet to

be used by a group of users as a single computer system. Technically JINI system extends

the Java application environment from a single virtual machine to a network of machines.

The JINI system is Java centric and assumes that all the co-operating components are

24

implemented in the Java programming language. It is, however, possible to accept

components created in other languages if their compilers can produce Java byte codes.

The high level goals of JINI are:

• Enabling users to share services and resources over the network.

• Providing users easy access to resources anywhere on the network while

allowing the user's network location to change.

• Simplifying the task of building, maintaining, and altering a network of

devices, software and users

The logical parts of JINI that try to satisfy these goals are:

• A set of components that provides an infrastructure for federating services in a

distributed system.

• A programming model that supports and encourages the production of reliable

distributed services.

• Services that can be part of a federated JINI system and that offer

functionality to any other member of the federation.

JINI services are typically computation, storage, or communication with another

service, which is a software filter, a hardware device, or another user. JINI programmers

must think in terms of services when they think of a set of servers and clients, users and

programs, and programs and files. Users, clients, servers do not exist in JINI; everything

is a service. JINI systems provide mechanisms for service construction, lookup,

communication and use in a distributed system. Examples of services include devices

such as printers, displays, or disks, software applications or utilities, information such as

databases and files, and users of the system.

25

Services in a JINI system communicate to each other using a service protocol

which consists of interfaces written in the Java programming language. The set of such

protocols is open-ended. The base JINI system defines a small number of such protocols

to provide critical service interactions.

The Lookup Service finds and resolves other services. This service is the main

mechanism for the interaction between a user and a JINI system. Lookup Service's job is

to know the available interfaces of the other services and the methods and functionality

that the other services are able to offer. Thus, when a user requests a particular service the

lookup service locates the appropriate service to satisfy the user.

Java Remote Method Invocation (RMI) provides the communication among

services. In reality it is not a service but an infrastructure that supports the

communication among services. RMI provides mechanisms to find, activate, and garbage

collect object groups. It provides remote procedures call mechanisms that allow not only

the interchange of data among the objects, but also the interchange of whole objects

including code for methods.

JINI supports two levels of security. The first level determines if the user of the

system who requests the service has the right to use this particular service. The second

level checks if a service has the right to request another service; furthermore, the

relationships among services are maintained in the access control list responsible for this

second level of security.

The access to many services in the JINI system environment is based on leasing.

Leasing in JINI means that each object allocates a particular service for particular period

of time using predefined rules. JINI offers two kinds of leasing service, exclusive leasing

26

that means no one else can use the service simultaneously and non-exclusive leasing that

allows the reallocation of the same service at the same time from a different user or

object.

The JINI Transaction interfaces provide a service protocol to coordinate a two-

phase commitment. A series of operations, either within a single service or spanning

multiple services, can be wrapped in a transaction. The semantics of a transaction is left

up to the service using those interfaces.

The JINI architecture supports distributed events too. An object may allow other

objects to register interest in events in the object and receive a notification of the

occurrence of the event. This enables distributed event-based programs to be written with

a variety of reliability and scalability guarantees.

The components of the JINI system can be segmented into three categories

infrastructure, programming model and services.

Advantages of JINI are:

• JINI can cross network and operating systems boundaries.

• JINI has the best methodology for event handling for the communication

between objects.

• JINI is a simple technology because it only uses Java's environment.

27

Base
Jfwa

Jas«.
+

iini

Infrastructure

JavaVJv!
RMI
Java Security

Dscovery/Jdn
Distrfouied Security
Lookup

Java APfe
JavaBeara™

Leasing
Trareacions
Events

Services

Enterprise Beam
JTS

Pririncj
Transaction Manager
JavaSpaces™ Service

Figure 7. JINI Architecture Segmentation (Source: SUN Microsystems Inc. JINI
Architecture Specification, Jan 1999, p.12.)

• In JINI it is easy, natural and often automatic for occurrences to join and leave

the system.

• JINI systems are currently far more dynamic than other network groups which

must be configured by hand in a centralized fashion.

• The model can recognize that the delivery of a distributed notification may be

delayed.

• The event and notification interfaces, which are an extension of the event

model used by JavaBeans components to the distributed environment, enable

event-based communication among JINI services.

The disadvantages of JINI are:

• The JINI architecture gains most of its simplicity by assuming that the Java

programming language is the implementation language for components.

• One cannot cross language boundaries with JINI and most legacy applications

are not written in Java so they must be rewritten before we can reuse them

with JINI.

28

• JINI is a very new architecture and nobody has ever used it extensively in the

real world yet, so it is not mature enough.

F. COMPARISON AMONG THREE ARCHITECTURES

There is no way to provide a complete comparison among these three distributed

computing systems. Any comparison depends on the purpose of the comparison and the

background of the audience.

Parallels among the main operations of the CORBA, DCOM and JINI include

these:

All three support multiple object instantiation, the CORBA and JINI through

registration and skeleton instantiation, and DCOM by the server explicitly or dynamically

through the COM run-time system.

DCOM uses the Object Remote Procedure Call (ORPC), CORBA the Internet

Inter-ORB Protocol (JJOP), and JINI the RMI as their underlying remote protocols.

When a client object needs to activate a server object, DCOM can do it by a

method call; on the other hand CORBA offers the same service through naming or trader

service, and JINI through a lookup service.

For object handling the client for DCOM uses an interface pointer while CORBA

and JINI use the object reference.

The Registry in DCOM maps object names as does the Implementation

Repository in CORBA, and the RMJRegistry in JINI.

29

The type information for methods is held by Type Library in DCOM, by Interface

Repository in CORBA, by the object itself in JINI which can be queried by using

reflection and introspection.

The responsibility for an object's location and activation falls to Service Control

Management (SCM) with DCOM, to Object Request Broker (ORB) for locating and to

Object Adapters for activating with CORBA, and to Lookup Service with JINI.

So we can see that the three systems have very similar operations. Other

similarities are:

• They have complex ways to define the interface of their components.

• They require that the user know networking to set up remote services.

• They can cross the network boundaries.

• They offer a low level of security.

CORBA is the most complete of the three. First, it is independent of language

and operating system. JINI can support only components that are implemented with Java

and DCOM works properly only in a Windows OS environment. Second, CORBA with

the addition of real-time event service and scheduling can be reliable enough and can

offer satisfactory performance. JINI may equal CORBA in this regard, but DCOM does

not. Third, CORBA is mature enough. Many applications have already been implemented

with it. DCOM is also mature, but JINI is not. CORBA is an open standard. JINI will be

offered as part of JAVA and DCOM as part of Windows. Of course, CORBA is not the

perfect solution for implementers of a distributed component system because of the high

level of effort and training required for success.

30

in. SOFTWARE REQUIREMENTS SPECIFICATION

A. OVERVIEW

The purpose of this project is to redesign and re-implement the CAMPEX

Employment Module with a distributed architecture using the object-oriented

methodology. The final product must offer to the Air University of United States Air

Force a tool that allows students to improve their skills in air campaign design through

practice. Also, this software must allow students to execute exercises from their personal

computers and transfer the results of their practice to the war college server.

B. CUSTOMERS

The customers are resident students, nonresident students and instructors at the

Air University.

C. GOALS

The ultimate goal is to offer an application to Air War College students that

allows them to execute exersices in air campaign planning. This application will also

allow instructors at the Air University to check the students' results. This application

must be capable of running on the students personal computers as well as on the Air

University computers. Thus, the CAMPEX Employment Module must offer:

• Fast and easy downloading.

• Fast and easy installation on computers that runs Microsoft Windows

Operating System independent of the configuration of the students' machines.
31

D.

Selection of the tactical exercise scenario.

Cues to the user for correctly sequencing events.

Information to the user about necessary assumptions used during the exercise.

Creation and editing of air tasking orders (ATOs).

Planning of the missions.

Automatic update of the game state with the execution of a game cycle.

Creation of reports with the results and estimations.

The ability to return to a previous state.

Display of the map of the exercise area.

Analysis of the student's plan.

Printing of reports, results, and information lists.

USER CHARACTERISTICS

The typical user of the CAMPEX Employment Module requires special education

in the air campaign planning. In addition, the user is expected to have a medium or low

level of familiarity with the Windows operating system and the Internet. If the user has

these characteristics then, he will be able to use the module after a brief training session

that will take approximately two to three hours.

E. GENERAL CONSTRAINTS

The CAMPEX Employment Module must be a fully autonomous system capable

of functioning for extended periods of time with minimal support. The CAMPEX

prototype will be provided in an ACCESS-2000 runtime-software package that will

32

include all the required bindings. This CAMPEX Employment Module will depend on

the Windows Operating system and Microsoft Office commercial product.

F. ASSUMPTIONS AND DEPENDENCIES

The following assumptions and dependencies have been defined in order to

simplify the analysis of the CAMPEX Employment Module and the implementation of

the CAMPEX Employment Module prototype.

1. The user (student) must know how to operate a personal computer and more

specifically how to use a personal computer that runs Microsoft Windows

operating system.

2. In this initial phase only the employment module prototype will be

implemented.

3. The software application will fully support the basic functionality of the

CAMPEX Employment Module and partially support the optional

functionality.

4. The user must be connected to the Internet to execute the "Send Exercise"

function.

G. SYSTEM FUNCTIONS

Ref# Function Use Case Category

Rl Student Support Functions

Rl.l Creates and displays new Student Card Ul evident

R1.2 Stores new Student attributes into the

objects repository (database)

Ul hidden

33

Ref# Function Use Case Category

R1.3 Displays existed Students I 1 evident

R1.4 Displays current student's attributes Ul evident

R1.5 Logs attributes changes to a student's object Ul evident

R1.6 Changes the object student attributes Ul hidden

R1.7 Searches student objects instantiations with

input key

Ul hidden

R2 Send Exercise Functions

R2.1 Displays existent Exercises objects U2 evident

R2.2 Queries Exercises objects with input key U2 hidden

R2.3 Outputs the collected exercise attributes to

Air University database

U2 hidden

R2.4 Displays message that informs student for

the success of the process

U2 evident

R3 Starts a CAMPEX module (Employment)

Functions

R3.1 Retrieves the "Copyright Screen" from

database

U3 hidden

R3.2 Displays the "Copyright Screen" U3 evident

R3.3 Retrieves the "Execute Order" from

database

U3 hidden

R3.4 Displays the "Execute Order" U3 evident

R3.5 Provides inter-process communication

mechanisms

U3 evident

R3.6 Retrieves the "DIA Intel Update" from

database

U3 hidden

R3.7 Displays the "DIA Intel Update" U3 evident

R3.8 Retrieves record the "Thai Forces

Available" from database

U3 hidden

34

Kef# Function Use Case Category

R3.9 Displays the "Thai Forces Available" List U3 evident

R3.10 Retrieves the "Weather Report" from

database

U3 hidden

R3.ll Displays the "Weather Report" U3 evident

R3.12 Retrieves the "Navy Update" from database U3 hidden

R3.13 Displays the "Navy Update" U3 evident

R3.14 Retrieves the "Weapon Availability Update"

from database

U3 hidden

R3.15 Displays the "Weapon Availability Update" U3 evident

R3.16 Retrieves record of "Program Notes" from

database

U3 hidden

R3.17 Displays "Program Notes" U3 evident

R3.18 Retrieves the of "Bomb Damages

Assessment and Targets Definitions" from

database

U3 hidden

R3.19 Displays the "Bomb Damages Assessment

and Targets Definitions"

U3 evident

R3.20 Retrieves the "Analysis and Corrections"

from database

U3 hidden

R3.21 Displays the "Analysis and Corrections" U3 evident

R3.22 Retrieves the "Read me file for Employment

Module" from database

U3 hidden

R3.23 Displays the "Read me file for Employment

Module" text

U3 evident

R4 ATO Support Functions

R4.1 Initiates a new ATO object with the name

given by user

U4 evident

R4.2 Loads an existent ATO U4 evident

35

Rcf# Function Use Case Category

R4.3 Copy an existent ATO to a new one with a

name given by user

U5 evident

R4.4 Renames an existent ATO U4 evident

R4.5 Erases an existent ATO U4 evident

R4.6 Displays an ATO enter form to enter ATO

attributes

U4 evident

R5 Support Planning Missions Functions

R5.1 Enters a target to the priority list U6 evident

R5.2 Decreases the priority of the existed targets

with lower priority than the specified

priority by one

U6 evident

R5.3 Increases the priority of the existed targets

with higher priority than the specified

priority by one

U6 evident

R5.4 Deletes the targets with priority lower than

20

U7 evident

R5.5 Creates and displays a new mission card U7 evident

R5.6 Stores new mission record to database U7 hidden

R5.7 Displays a mission object U7 evident

R5.8 Logs attributes to a mission object U7 evident

R5.9 Search Missions objects with input key

(mission or package)

U7 hidden

R5.10 Deletes a Mission object U7 evident

R6 Fly an ATO Support Functions

R6.1 Executes the assigned missions and

packages

U8 hidden

R6.2 Collects all assigned missions, packages,

and actual data objects

U8 hidden

R6.3 Calculates the collected objects U8 hidden

36

Ref# Function ;,UseCase.. Category

R6.4 Creates a new ATO state U8 evident

R6.5 Save the calculation's results as attributes of

the new ATO state

U8 hidden

R7 Initial Information Support Functions

R7.1 Queries data base for Blue Bases objects U9 hidden

R7.2 Displays total Basing Information U9 evident

R7.3 Queries database for sorties attributes U9 hidden

R7.4 Calculates the queries' results U9 hidden

R7.5 Displays available sorties by Blue Bases U9 evident

R7.6 Queries database for the necessary for

analysis objects

U9 hidden

R7.7 Calculates the queries' results U9 hidden

R7.8 Displays the missions' analysis U9 evident

R7.9 Queries the database for Ground Forces

objects

U9 hidden

R7.10 Displays the collected by the queries objects U9 evident

R8 Estimated Results Support Functions

R8.1 Queries database for Recce by target U10 hidden

R8.2 Displays Recce by targets for the current

program state

U10 evident

R8.2.1 Queries database for missions and actual

information objects

U10 hidden

R8.3 Calculates the collected objects U10 hidden

R8.4 Displays estimated results of planned

missions before the missions execution

U10 evident

R8.5 Queries database for missions that have the

attribute sorties = empty

U10 hidden

R8.6 Displays missions without sorties U10 evident

37

Kef#

R8.7

R8.8

R8.9

R8.10

R8.ll

R8.12

R8.13

R9

R9.1

R9.2

R9.3

R9.4

R9.5

R9.6

R9.7

Function Use Case

Queries database for necessary objects to

calculates the "daily summary"

U10

Calculates the queries (R8.7) results to

create daily summary

U10

Displays daily summaries by Aircraft Type U10

Displays daily summaries by Task Type U10

Queries database for necessary objects

attributes to create the "logistics

requirements"

U10

Calculates the results of the (R8.11) queries

to create the report

U10

Displays logistics requirements by Blue

Base and Supply category

U10

Actual Results Support Functions

Queries database for necessary objects to

create "the cumulative summary report"

Uli

Calculates the collected objects attributes of

query (R9.1)

Uli

Displays cumulative summary with the end

of past date

Uli

Queries database for the necessary objects

for the report "Recce Targets at the start of

the current Date"

Uli

Calculates the results of query (R9.5) Uli

Displays Recce for Targets at the start of the

current date

Uli

Queries the database for the necessary

objects to create the report "Enemy Planes

over Blue Bases during the Past Day"

Uli

Category

hidden

hidden

evident

evident

hidden

hidden

evident

hidden

hidden

evident

hidden

hidden

evident

hidden

38

Kef# Function Use Case Category

R9.8 Calculates the results of query (R9.7) Uli hidden

R9.9 Displays the number of enemy planes over

the Blue Bases during the past date

Uli evident

R9.10 Queries the database for the necessary

objects to create the report of "Overall

Indicators of Sorties at the end of the Past

Date"

Uli hidden

R9.ll Calculates the results of query (R9.10) Uli hidden

R9.12 Displays overall indicators of sorties at the

end of the past date

Uli evident

R9.13 Queries the database for the necessary

objects to create the report of "Overall

Indicators of Effort Weight at the End of the

Past Date"

Uli hidden

R9.14 Calculates the results of query (R9.13) Uli hidden

R9.15 Displays overall indicators of effort weight

at the end of the past date

Uli hidden

R9.16 Queries the database for the necessary

objects to create the report of "Overall

Indicators of Blue Attrition at the End of the

Past Date"

Uli hidden

R9.17 Calculates the results of query (R9.16) Uli hidden

R9.18 Displays overall indicators of Blue Attrition

at the end of the past date

Uli evident

R9.19 Queries the database for the necessary

objects to create the report of "Overall

Indicators of Loss Ratio at the End of the

Past Date"

Uli hidden

R9.20 Calculates the results of query (R9.19) Uli hidden

39

Ref# Function Use Case 1 Category

R9.21 Displays overall indicators of loss ratio at

the end of the past date

Uli evident

R9.22 Queries the database for the necessary

objects to create the report of "Losses by

Mission and by Task Type During the Past

Date"

Uli hidden

R9.23 Calculates the results of query (R9.22) Uli hidden

R9.24 Displays losses by mission and by task type

during the past date

Uli evident

R9.25 Queries the database for the necessary

objects to create the report of "Losses by

Mission and by Aircraft Type During the

Past Date "

Uli hidden

R9.26 Calculates the results of query (R9.25) Uli hidden

R9.27 Displays losses by mission and by aircraft

type during the past date

Uli evident

RIO Support Functions of General Purpose

RlO.l Loads the ATO Management screen U3 optional

R10.2 Loads the program Main Menu screen U4,U5 optional

R10.3 Displays Operations Area Map U12 optional

R10.4 Quit the program None optional

R10.5 Changes time of displaying messages on the

screen 1-5 sec

None optional

R10.6 Changes color of the screen None optional

R10.7 Locked keypad to arrows Yes/No None optional

R10.8 Convert box characters Yes/No None optional

R10.9 Showing bombing on map Yes/No None optional

40

Rcf# Function Use Case Category

R10.10 Highlights steel for LCD/Mono screen

Yes/No

None optional

RlO.ll Displays warning messages ALL optional

R10.12 Displays reminder messages ALL optional

R 10.13 Displays additional explanation messages ALL optional

R10.14 Displays interactive messages ALL optional

Table 1. System Functions

H. SYSTEM ATTRIBUTES

Attribute Details and Boundary Constraints

Response time When entering new values, the system

must give the opportunity to enter the next

item in 1 sec.

Response time When user asks to see a report or

information list, system must displays the

report on the screen in 5 sec

Response time System must execute an ATO and moves to

the next state in 5 sec

Response time System must start printing the reports in 15

sec

Interface metaphor Forms-metaphor windows and dialog boxes

Operating system platform (initially) Microsoft Windows 95 and NT

Table 2. System Attributes

41

I. USE CASES

1. High Level Use Cases

Actors:

Purpose:

Overview:

Type:

Cross References

Ul: Start Employment Module
U2: Student Info
U3: Load an ATO
U4: Manage an ATO
U5: Describes the 20 Targets with Highest Priority
U6: Plan an ATO
U7: Fly an ATO
U8: Initial Information
U9: Estimated Results

U10: Actual Results
Uli: Map
U12: Send Exercise

USE CASE (Ul): START EMPLOYMENT MODULE

Student

Start the Employment Module

Student selects to use the CAMPEX Employment Module, the

program displays the Introduction Reports and "Ground Forces

Report". The student can select to see only the "Ground Forces

Report" and as alternative to continue with the program.

Primary and essential

R3, R3.1, R3.2, R3.3, R3.4, R3.5, R3.6, R3.7, R3.8, R3.9, R3.10,

R3.ll, R3.12, R.3.13, R3.14, R3.15, R3.16, R3.17, R3.19, R3.20,

R3.21, R3.22, R7.9, R7.8

42

Actors:

USE CASE (U2): STUDENT INFO

Student

Purpose: Student identifies himself

Overview: Student enters his Personal Information in the CAMPEX. If he has

already entered his personal information, he just selects his own

name.

Type: Primary and essential

Cross References: Rl.l, R1.2, R1.3, R1.4, R1.5, R1.6, R1.7, R10.il, R10.12,

R10.13,R10.14,R10.15-

USE CASE (U3): LOAD ANATO

Actors: Student

Purpose: Load an ATO

Overview: Student selects an ATO to load. When completed, student will

enter the "Main Menu" and the selected ATO is loaded.

Type:

Cross References:

Actors:

Purpose:

Primary and essential

R4.2, R10.1, R10.il, R10.12, R10.13, R10.14

Use Cases: Student must have completed the

• "Start Employment Module" Use Case (Ul)

• "Student Info" Use Case (U2)

USE CASE (U4): MANAGE ANATO

Student

To allow student to manage to the ATO's

43

Overview:

Type:

Cross References:

Student wants to manage to an ATO. When completed, student will

return in the "ATO File Management" menu and, he can continue

by loading an ATO.

Primary and essential

R4.1, R4.3, R4.4, R4.5, R4.6, R10.1, R10.il, R10.12, R10.13,

R10.14

Use Cases: Student must have completed the

• "Start Employment Module " Use Case (Ul)

• "Student Info" Use Case (U2)

Actors:

Purpose:

Overview:

Type:

Cross References:

USE CASE (U5): DESCRIBE THE 20 TARGETS WITH HIGHEST
PRIORITY

Student

Fill the list with 20 targets with highest priority

Student has decided which targets of his plan have the highest

priority. Student edits the list of 20 targets with highest priority.

After the completion of this use case, the student's "20 Highest

Priority Target List" can be displayed by the application.

Primary and essential

R5.1, R5.2, R5.3, R5.4, R10.2, R10.il, R10.12, R10.13, R10.14

Use Cases: Student must have completed:

• "Start Employment Module" Use Case (U1)

• "Student Info" Use Case (U2)

44

"Load an ATO" Use Case (U3)

Actors:

Purpose:

Overview:

Type:

Cross References:

USE CASE (U6): PLAN AN ATO

Student

Enters student's plans

Student enters new missions or edits old missions. With

completion of this use case the student's plans have been entered.

Primary and essential

R5.5, R5.6, R5.7, R5.8, R5.9, R5.10, R10.2, R10.il, R10.12,

R10.13.R10.14

Use Cases: Student must have completed:

• "Start Employment Module" Use Case (Ul)

• "Student Info" Use Case (U2)

• "Load an ATO" Use Case (U3)

USE CASE (U7): FLY AN ATO

Actors: Student

Purpose: To execute the planned missions

Overview: Student is running fly missions. System calculates the result of the

planned missions. Saves the results in a new ATO. Loads the new

ATO.

Type: Primary and essential

Cross References: R6.1, R6.2, R6.3, R6.4, R6.5, R10.2, R10.il, R10.12, R10.13,

R10.14

45

Actors:

Purpose:

Overview:

Use Cases: Student must have completed:

• "Start Employment Module" Use case (Ul)

• "Student Info" Use Case (U2)

• "Load an ATO" Use Case (U3)

• "Plan an ATO" Use Case (optional) (U6)

USE CASE (U8): INITIAL INFORMATION

Student

Inform student for the initial data of an ATO

Student asks for initial information. With completion of this use

case, the student has seen or printed the information that he has

asked for.

Type:

Cross References:

Actors:

Purpose:

Primary and essential

R7.1, R7.2, R7.3, R7.4, R7.5, R7.6, R7.7, R7.8, R7.9, R7.10,

R10.2, R10.il, R10.12, R10.13, R10.14

Use Cases: Student must have completed:

• "Start Employment Module" Use Case (U1)

• "Student Info" Use Case (U2)

• "Load an ATO" Use Case (U3)

USE CASE (U9): ESTIMATED RESULTS

Student

Display the estimated results of the student plan before executing

the plan

46

Overview:

Type:

Cross References:

Student asks for the estimated results. With completion of this use

case estimated results are displayed on the screen.

Primary and essential

R8.1, R8.2, R8.3, R8.4, R8.5, R8.6, R8.7, R8.8, R8.9, R8.10,

R8.ll, R8.12, R8.13, R10.2, R10.il, R10.12, R10.13, R10.14

Use Cases: Student must have completed:

• "Start Employment Module" Use Case (Ul)

• "Student Info" Use Case (U2)

• "Load an ATO" Use Case (U3)

• "Plan an ATO" Use Case (optional) (U6)

Actors:

Purpose:

Overview:

Type:

Cross References:

USE CASE (U10): ACTUAL RESULTS

Student

Inform student of the Results Reports of an ATO

Student asks for information. With completion of this use case, the

student has seen or printed the information that he has asked for.

Primary and essential

R9, R9.1, R9.2, R9.3, R9.4, R9.5, R9.6, R9.7, R9.10, R9.ll,

R9.12, R9.13, R9.14, R9.15, R9.16, R9.17, R9.18, R9.19, R9.20,

R9.21, R9.22, R9.23, R9.24, R9.25, R9.26, R9.27, R10.2, R10.11,

R10.12,R10.13,R10.14

Use Cases: Student must have completed:

• "Start Employment Module" Use Case (U1)

47

Actors:

Purpose:

Overview:

Type:

Cross References:

Actors:

Purpose:

Overview:

Type:

• "Student Info" Use Case (U2)

• "Load an ATO" Use Case (U3)

• "Fly an ATO" Use Case (U7)

USE CASE (Uli): MAP

Student

See the map of the exercise area

Student selects to see the map via the Main Menu. When

completed, the map is displayed on the screen.

Primary and essential

R10.2.R10.3

Use Cases: Student must have completed:

• "Start Employment Module" Use Case (U1)

• "Load an ATO" Use Case (U3)

USE CASE (U12): SEND EXERCISE

Student

To send the results of an exercise to "Air University"

Student must be connected to the "internet" first. Then, selects the

Option "Send Exercise Results to the Air University" and selects

an exercise from the displayed. With the completion of this use

case, the selected exercise results are sent to the Air University

server.

Primary and essential

48

Cross References: R2.1, R2.2, R2.3, R2.4, R10.15

Use Cases: User must have completed the

• "Student Info" Use Case (U2)

• User must have connected to the Internet

2. CAMPEX Employment Module Use Case Diagram

User starts the CAMPEX by identifying himself, and by this way the results of the

exercise execution will have an owner.

Then the user selects to start the CAMPEX Employment module.

The last use case that is described by the CAMPEX Employment Module use case

diagram is "Send Exercise." With this use case, the user can send the results of an

exercise to the Air War College server. The sent results have the user ID and the Air War

College Instructors can identify the owner.

49

Figure 8. Use Cases Diagram

Dependency from
Actor Actions

Dependency from
other Use Case

RANKING USE CASES

Rank

High

Medium

Use Case

Load an ATO (U3)

Fly ATO (U7)

Plan an ATO (U6)

Describes the 20 targets with highest

priority (U5)

Justification!

Important because it

initiates the Employment

module.

Most important and highest

risk process.

Important because it allows

the student enter his plan.

Important because it allows

the student to enter his plan

50

Rank Use Case Justification

Medium Student Info (LT2,) Affects the identification of

the exercise results.

Start CAMPEX Employment Module

(Ul)

Affects the initial phase of

the CAMPEX

Send Exercise (U12) Affects the process of

ranking the exercises.

Manage an ATO (U4) Affects the initial phase of

the module.

Initial Information (U8) Informs student about the

current data.

Estimated Results (U9) Informs student about the

changes that will happen to

the data.

Actual Results (U10) Informs student about the

new state data.

Low Map (U12) Minimum effect on the

processes

Table 3. Ranking Use Cases

51

K. CONCEPTUAL MODEL

EMPLOY o

Vl ^

Has

Hiis

Sutosfegray
1

► '
Has

4

H<s

Mtp

0.4
Ttrpt

Ufa o

toup

, Has *
ATÜ

►

.1
BunbTypt

Ainmfi

H;is

?
1..5

ATOBay

Hi;

Müfltm

T Con ains

1

1.1
Sector MType

Figure 9. Conceptual Model.

52

IV. SOFTWARE DESIGN SPECIFICATION (SDS)

A. INTRODUCTION

1. Purpose

This chapter specifies the design for the Campaign Planning Exercises

(CAMPEX) Employment Module and presents the interaction (collaboration) and object

diagrams that describe the overall CAMPEX Employment Module software.

2. Scope

This SDS provides extensive information concerning the designed and proposed

functionality of the CAMPEX Employment Module. This chapter describes the

subsystems that comprise the CAMPEX Employment Module. The sequence diagrams

describe the individual CAMPEX object interactions via messages/methods. The object

diagrams illustrate the specifications for software classes and the interfaces for the

CAMPEX Employment Module.

3. Definitions, Acronyms, and Abbreviations

All definitions, acronyms, and abbreviations are included in Appendix C:

"Abbreviations, Acronyms, and Definitions". Abbreviations, acronyms, and definitions

from the previous chapter have been carried forward for consistency.

53

B. THE SYSTEM ARCHITECTURE

The Detailed Architecture Diagram

Presentation Subsystem

Application Subsystem

Domain Concepts

CAMPEX
Employment

Module

Start ATO Manage
ATO

ATO
Haraiiij

Initial Estiroaiai
Results

Actual
Route

Database
Interface

i.
Coxniiuiifcaiion Services

Data Base Subsystem

Storag Concepts

1 i 1 1 1 I 1 I 1 i .

DATABASE Student
Record«

ATO
Records

ATODay
Record!

Mission
Records

Report
Records

Group
Records

1 1 1 1 1 1 I 1 , 1 1 (

Aircraft
Records

Bate
Record)

Target
Records

TgtCatcgoiy
Records

TgtSubcategtxy
Records

Sector
Records

1 1] 1

Bomb
Records

Parameter»
Record!

Figure 10. Detailed Architecture Diagram.

The CAMPEX Employment Module has three subsystems. The Presentation

Subsystem/Layer contains the Graphical User Interfaces (GUIs). The Application

Subsystem/Layer contains the CAMPEX Employment Module high level object-oriented

services, the services for communication with external devices and interface to the local

54

and remote database (Server of the Air War College). The Storage Subsystem contains

the actual database.

a. Presentation Subsystem

• Object Class: Graphical User Interface.

• Interface to Other Subsystems: Application Subsystem.

• Human Interface: The GUI provides the only interface to the user of

the CAMPEX employment Module. Chapter V User Manual provides

a pictorial representation of the CAMPEX Employment Module

human interfaces.

• Overall Control Structure: The GUI is consisting of a number of

Microsoft ACCESS 2000 Forms and Sub-forms.

• Resource Allocation: The GUI first allocates resources that support the

system screen and then allocates part of the system processing power

and data storage space.

• Data Stores and Management: The GUI subsystem does not store or

manage data; it has no direct access to data, but it does offer a

communication channel between the user and the Application

Subsystem.

• Global Resources and Management: The management of the global

resources associated with the three CAMPEX Employment Module

Subsystems is conducted through a time-sharing approach. Resources

55

are not shared equally among all the subsystems. The GUI uses most

of the resources that support the screen operation, for example.

• Boundary Conditions: None.

• Constraints: The GUI of CAMPEX Employment Module cannot be

made autonomous from the other subsystems of the CAMPEX

Employment Module. The entire CAMPEX Employment Module

prototyping will be provided in a Microsoft ACCESS 2000 runtime

software package that includes all required bindings.

• Trade-Off Priorities: None.

• Design Decision /Rationale:

• The GUI provides the only external interface to CAMPEX

Employment Module.

• ACCESS 2000 will be used in the GUI Subsystem.

• All Forms and Sub-Forms are considered essential.

b. Application Subsystem

• Object Class: See Figure 11.

• Interface to Other Subsystems: Presentation Subsystem.

• Human Interface: None

• Overall Control Structure: The CAMPEX Employment Module

prototype uses sequential method to control its tasks, with one active

object to monitor and control all tasks. The CAMPEX Employment

56

•

Module is procedurally driven; it uses fixed procedural loops to

control the system.

Resource Allocation: Allocation of resources is focused towards the

timed processes required to monitor the GUI. A process that also sends

objects to the Air War College allocates communication resources.

• Data Stores Management: The Data Base Subsystem is responsible for

the management and storage of the data. The Application Subsystem

has direct access to the data storage resources.

• Global Resources and Management: The objects within the

Application Subsystem share the resources equally.

• Boundary Conditions: Startup, shutdown, termination, and failure

should be performed/investigated by the system user. Details are

provided in the user's manual in Chapter V.

• Constraints: Employment Module prototype can be used as fully

autonomous system when packaged as a Microsoft ACCESS 2000

run-time including all the required bindings. Otherwise it can only

work through Microsoft ACCESS 2000. Furthermore, the user must

establish an Internet connection first to communicate and send

information to the Air War College Server.

• Trade-Off Priorities: None

• Design Decision/Rationale:

• Efforts were taken to minimize the use cases but the number was

constrained by the required functionality.

57

• The CAMPEX Employment Module fully supports all physically

challenged persons.

• Visual Basic and SQL will be used through Microsoft ACCESS

2000 in the Application Subsystem.

• All functions are considered essential.

• For the communication with the Air War College Server a DSN

address will be used.

c. Storage Subsystem

• Object Class: Data Base

• Interface to Other Subsystems: Application Subsystem.

• Human Interface: None

• Overall Control Structure: The Data Base consists of a number of

tables and various types of queries.

• Resource Allocation: The Data Base uses about 10 MB of hardware

storage in the system at any time and allocates additional space for

queries.

• Data Stores and Management: Microsoft ACCESS 2000 handles the

storage for the Data Base.

• Global Resources and Management: As described above in Resource

Allocation.

• Boundary Conditions: None.

58

• Constraints: Data Base is constrained by the ACCESS 2000 general

constraints.

• Trade-Off Priorities: None.

• Design Decision/Rationale:

• ACCESS 2000 will be used in the Data Base Subsystem.

• DSN address describes the address of the Air War College Server.

• All functions are considered essential.

• The user has no direct access to the Data Base.

59

OBJECT/CLASS DIAGRAMS

Object Diagram

Report

Map

Employ

1

Hak »a*

-^SBJT

JEa*

U«

1"*l :
ATO

UKJ£IUd

1.5.
^<l«r ATODay

assisted.

Mission.

uiipi

flfetflbr |

Xarff^

1

Has

\f 1..8

asiign

<J^
«cfLHbr
besaflbr

a«ipi

Gkwup

Category

1
Has

con bains con tains

a«! ign

| soctorgb rf

asiLgn

\fl

Sector
tasfcHbr |

V^C.-l
bom b£b r

Task Typ* BcnibType

Aircraft Base

I *^

Category

Figure 11. CAMPEX Employment Module Object.

60

2. Classes-Objects Attributes and Operations

a. Class Employ

1/ Attributes

Attribute Type Description

Hi_5Damage Integer Parameter for calculation

Lo_5Damage Integer Parameter for calculation

Hi_7Damage Integer Parameter for calculation

Lo_7Damage Integer Parameter for calculation

NotFireAt Integer Parameter for calculation

DogFightBasic Integer Parameter for calculation

KillRatioBad Integer Parameter for calculation

KillRatioGood Integer Parameter for calculation

MinWorstRatio Integer Parameter for calculation

MinBstRatio Integer Parameter for calculation

PercentRedDCA Integer Parameter for calculation

PercentRedOCA Integer Parameter for calculation

PercentRedFlying Integer Parameter for calculation

MaxPercentRedAcftLost Integer Parameter for calculation

RedAbort Integer Parameter for calculation

RedFEBALoss Integer Parameter for calculation

RedFtrLoss Integer Parameter for calculation

RedTermLoss Integer Parameter for calculation

RedNotFind Integer Parameter for calculation

DoAndShowArmyMsns Integer Parameter for calculation

ShowEnemyBmbrsOverBlueBases Integer Parameter for calculation

TightenessFactor Integer Parameter for calculation

AIMfudgeFactor Integer

61

Parameter for calculation

Attribute Tvpe Description

PercentDailyDegradeGnd Integer Parameter for calculation

AcftGndEquivFactor Integer Parameter for calculation

GndDiffTomoveFEBA Integer Parameter for calculation

Table 4. Class Employ-Attributes

2/ Operations

Operation

initStudentServicesGUI

initSelectATOGUI

InitCopyATOGUI

init20TgtHighestPriority

InitPlanEditMsns

InitDeletePackage

SelectStudent

AddStudent

getlntroReport

loadATODay

AddATO

selectATOToCopy

Input

None

None

None

None

None

None

SSN

SSN, rank, firstName,

lastName, country,

address, e-Mail,

section

Output

Student (all existed)

ATODay (all existed)

ATODay (all existed)

Targets (all existed,

displays the first 20 with

higher priority)

m: Mission (all existed)

p: Integer

None

None

None

SSN, description, day

SSN: Text,

description: Text

SSN: Text,

description 1: Text,

description2: Text

Report (all reports existed)

None

None

None

62

Operation Input Output

eraseATO SSN: Text,

description: Text

None

modifyTgt SSN: Text

description: Text

day: Integer

tgtNbr: Integer

priority: Integer

None

enterMsn st: Student,

a:ATO

ad: ATODay

taskType: Integer

acftType: Integer

base: Integer

sector: Integer

tgtCategNbr: Integer

tgtSubNbr: Integer

bmbTypeNbr: Integer

nbrOfSorties: Integer

package: Integer

None

deleteMsn SSN: Text

description: Text

day: Integer

msnNbr: Integer

None

deletePackage SSN: Text

description: Text

day: Integer

package: Integer

None

flyATO None None

estimatedResults None r: Report

63

Operation Input Output

flightsWithoutSorties None r: Report

dailySummary None r: Report

logisticsRequirements None r: Report

blueBasingSum None r: Report

recceTgt None r: Report

analysis None r: Report

sortiesAvailable None r: Report

cumulativeSum None r: Report

enemyOverBlueBase None r: Report

groundWarSummary None r: Report

measuresOfMerit None r: Report

yesterdayLossesByAcft None r: Report

yesterdayLossesByTask None r: Report

selectMap mapNbr: Integer map: Map

selectATOToSend SSN: Text,

description 1: Text,

description2: Text

None

updateStudent st: Student

selection: Boolean

st: Student

addStudent st: Student st: Student

updateReport r: Report

g: GroundUnit:=Null

None

updateATODay ad: ATODay

selection: Boolean

None

deleteATOday ad3: ATODay None

addGroup ad: ATODay

g: Group

None

addSector ad: ATODay

s: Sector

None

64

Operation Input Output

addTgt ad: ATODay

t: Target

None

addMsn ad: ATODay

m: Mission

None

checkMsn m: Mission exist: Boolean

clacMsnLosses m: Mission 1: Integer Array

updateMsn m: Mission

ad: ATODay

1: Integer Array

None

calculateEstimatedResults m: Mission er: Integer Array

updateReport r: Report

m: Mission

er: Integer Array

None

calcLogReq m: Mission Ir: Integer Array

calculateAnalysis m: Mission ana: Integer Array

calculateSortiesAvailable m: Mission

g: Group

as: Integer

calculateCumSumP 1 m: Mission csl: Integer Array

calculateCumSumP2 g: Group cs2: Integer Array

calculateCumSumP3 t: Target cs3: Integer Array

calculateEnemyOverBlueBases b: Base

g: Group

eobb: Integer

calcSector m: Mission si: Integer

calclateOverlndicators m: Mission

m: Mission

oi: Integer Array

calculateLosses m: Mission

m: Mission

los: Integer

addStudent st: Student None

65

Operation

updateReport

Input

r: Report

gu: Null

Output

None

Table 5. Class Employ-Operations

b. Class Student

1/ Attributes

Attribute

SSN

Rank

First Name

Last Name

Country

Address

Section

E-Mail

Selection

Operation

getStudentAll

getStudentSel

getStudent

checkStudent

Type

Text

Text

Text

Text

Text

Text

Integer

Text

Boolean

Description

Unique number for each student

Rank of Student

First name of the Student

Last name of the Student

Country of the Student

Address of the Student

Section of the Student

E-mail

True for the current Student

Table 6. Class Student-Attributes

2/ Operations

Input

None

selection : Boolean

SSN: Text

SSN: Text

Output

St: Student

St: Student

St: Student

Exist: Boolean

Table 7. Class Student-Operations

66

Class ATO

1/ Attributes

Attribute Type Description

Description Text The ATO name

Selection Boolean True for the current ATO

Table 8. Class ATO-Attributes

2/ Operations

Operation Input Output

getATO st: Student a: ATO (all existed)

addATO st: Student

description: Text

None

getATO st: Student

description: Text

a: ATO

getATO st: Student

selection: Boolean

a: ATO

deleteATO st: Student

description: Text

None

Table 9. Class ATO-Operations

Class ATODay

1/ Attributes

Attribute Type Description

Day Integer The ATODay name

Selection Boolean True for the current ATODay

Table 10. Class ATODay-Attributes

67

2/ Operations

Operation Input output
getATODuy a:ATO ad: ATODAY

getATODaySel selection: Boolean ad: ATODAY

getATODayDay a: ATO

day: Integer

ad: ATODAY

addATODay a: ATO

day: Integer

None

deleteATOdAY a: ATO

day: Integer

None

getATODaySelandATO a: ATO

selection: Boolean

ad: ATODAY

Table 11. Class ATODay-Operations

Class Mission

1/

Attribute

MsnNbr

Package

NbrOfSorties

Priority

SortieRate

Attributes

Type

Integer

Integer

Integer

Integer

Integer

Description

The number of Mission

The package number of the

Mission

The number of sorties assigned in

the Mission

The priority for execution,

describe by the Task Type that

assigned to the Mission and by

the user selection in 20 highest

priority list

Parameter for calculation

68

Attribute Type Description

blueBombLoadQuantity Integer Parameter for calculation

Table 12. Class Mission-Attributes

2/ Operations

Operation Input Output

updateMsn taskType: Integer

acftType: Integer

base: Integer

sector: Integer

tgtNbr: Integer

tgtCaNbr: Integer

tgtSubNbr: Integer

bmbTypeNbr: Integer

nbrOfSorties: Integer

package: Integer

None

deleteMsnAll ad: ATODay None

getMsnAll ad: ATODay m: Mission (all existed)

getMsn ad: ATODay

msnNbr: Integer

m: Mission

addMsn taskType: Integer

acftType: Integer

base: Integer

sector: Integer

tgtNbr: Integer

tgtCaNbr: Integer

tgtSubNbr: Integer

bmbTypeNbr: Integer

None

nbrOfSorties: Integer

package Integer

69

Operation Input Output

deleteMsn ad:ATODay

msnNbr: Integer

None

getMsnPkg ad:ATODay package: Integer

deleteMsnPkg ad.ATODay

package: Integer

None

deleteMsnBad ad:ATODay None

updateSector ad:ATODay

m.sector: Integer

1: Integer

None

updateGroup ad:ATODay

m.group:Integer

1: Integer

None

updateTarget ad:ATODay

m.tgt: Integer

1: Integer

None

Table 13. Class Mission-Operations

/ Class Target

1/ Attributes

Attribute Type Description
TgtNbr Integer The number of Target

Name Text The description of Target

Zone Integer The zone of Target

Nationality Boolean True for the Chinese Targets,

meaning that they cannot be

assigned to a Mission

%Operational Integer The percentage operational of the

Target

70

Attribute Typ»' Description

ShelterStatus Integer Parameter for calculation

RisklnZone Integer Parameter for calculation

RedBaseAcftTypeShetlerSatus Integer Parameter for calculation

Table 14. Class Target-Attributes

2/ Operations

Operation Input Output

deleteTgt ad:ATODay None

getTgtAll ad:ATODay t:Target (all existed)

updateTgt ad:ATODay

tgtNbr: Integer

priority:Integer

None

Table 15. Class Target-Operations

g. Class Category (Target)

Attributes

Attribute Type Description

CategoryNbr Integer Unique number for every

category

Description Text The description of Category

RisklnZone Integer Parameter for calculation

Table 16. Class Category-Attributes

h. Class Target Subcategory

Attributes

71

Attribute

SubcategoryNbr

Description

Type

Integer

Text

Description

Unique number for every

subcategory

The description of subcategory

Table 17. Class Subcategory-Attributes

i. Class Group

1/ Attributes

Attribute

GroupNbr

AcftAvailable

Losses

Type

Integer

Integer

Integer

Description

Unique number for every group

Number of aircraft available in

group

Losses of group from the start of

the game

Table 18. Class Group-Attributes

2/ Operations

Operation

deleteGroup

getGroup

getGroupInit

Input

ad:ATODay

ad:ATODay

None

Output

None

g:Group

g: Group

Table 19. Class Group-Operations

Class Aircraft

1/ Attributes

Attribute

AcftTypeNbr

Type

Integer

Description

Unique number for every aircraft

72

Attribute Type Description

AcftName Text Description of aircraft

InCommissionRate Integer Parameter for calculation

AbortPercent Integer Parameter for calculation

FuelPerSortie Integer Parameter for calculation

AirAirAbility Integer Parameter for calculation

AirToGroundAbility Integer Parameter for calculation

Stealth Boolean True for aircrafts without losses

Table 20. Class Aircraft-Attributes

2/ Operations

Operation Input Output

getAcftType None acft: Aircraft

Table 21. Class Aircraft-Operations

Class Sector

1/ Attributes

Attribute Type Description

SectorNbr Integer Unique number for every sector

SectorName Text Description of sector

BlueFrontLine Integer Parameter for calculation

RedFrontLine Integer Parameter for calculation

BlueReinfRate Integer Parameter for calculation

RedReinfRate Integer Parameter for calculation

CurFEBApsn Integer Parameter for calculation

GroundResults Integer Parameter for calculation

BluePosition Integer Parameter for calculation

73

Attribute Type Description

RedPosition Integer Parameter for calculation

Table 22. Class Sector-Attributes

2/ Operations

Operation Input Output

deleteSector ad: ATODay None

getSectorlnit None s: Sector

getSector ad: ATODay s: Sector

Table 23. Class Sector-Operations

m. Class Task Type

1/ Attributes

Attribute Type Description

TaskTypeNbr Integer Unique number for every task

TaskTypeName Text Description of task type

(abbreviation of ATO type

mission)

FEBAlossBasic Integer Parameter for calculations

FEBAlossIfDSA Integer Parameter for calculations

FEBAlossIfDSUP Integer Parameter for calculations

FEBAlossIfDSAandDSUP Integer Parameter for calculations

DofFightProbBasic Integer Parameter for calculations

DogFightProblfDSE Integer Parameter for calculations

DogFightProbIfC3 Integer Parameter for calculations

DogfightProbIfDSEandC3 Integer Parameter for calculations

74

Attribute Type Description

TermLossBasic Integer Parameter for calculations

TermLossIfO Integer Parameter for calculations

TermLossIfDSA Integer Parameter for calculations

TermLossIfDSUP Integer Parameter for calculations

TermLossIfC3andDSA Integer Parameter for calculations

TermLossIfC3andDSUP Integer Parameter for calculations

TermLossIfDSAand DSUP Integer Parameter for calculations

TermLossIfC3andDSAandDSUP Integer Parameter for calculations

ProbNotFind Integer Parameter for calculations

Priority Integer Parameter for calculations

Table 24. Class Task Type-Attributes.

2/ Operations

Operation Input Output

getTaskType None tsk:TaskType

Table 25. Class Task Type-Operations

n. Class Bomb Type

Attributes

Attribute Type Uescription

BombTypeNbr Integer Unique number for every task

bombTypeName Text Description of bomb type

Table 26. Bomb Type-Attributes

75

Class Map

1/ Attributes

Attribute Typp Description

MapNbr Integer Unique number for every map

MapDescription Text Description of map

Mapimage GIF Image of map

Table 27. Class Map-Attributes

2/ Operations

Operation Input Output
getMap None map:Map

getMap mapNbr: Integer map:Map

Table 28. Class Map-Operations

Class Report

1/ Attributes

Attribute

ReportTitle

ReportBody

Type

Text

Text

Description

Unique number for every report

Text of report

Table 29. Class Report-Attributes

2/ Operations

Operation Input Output

getlntroReport None r: Report

createReport title: Text r: Report

76

Operation Input Output

createReport r: ATODay

title: Text

r: Report

Table 30. Class Report-Operations

77

THIS PAGE INTENTIONALLY LEFT BLANK

78

V. PROTOTYPE

A. PURPOSE

The purpose of this chapter is to describe the way that the prototype is

implemented. It also provides a "User Manual" of the prototype for easy using.

B. PROTOTYPE IMPLEMENTATION

1. General

The prototype was implemented with Microsoft Access 2000 for the following

two reasons.

First, most of the use cases can be implemented as interactions between the GUI

subsystem and the Database subsystem without involving the Application subsystem.

Second the number of functions of the application is big and the available time is

not enough to implement the Design Specification with a classical object-oriented

language.

The use of ACCESS 2000 cannot fully prove the object-oriented Design

Specification of Chapter IV. Yet it proves the correct design of Database, can be used for

the verification of the Requirements Specification of Chapter HI, and partially prove the

correctness of the Objects'attributes and interactions.

79

2. Database Design

The Prototype consists of Tables, Queries, Forms, Macros and Reports. The

Database Entity-Relationship Diagram constructed by the ER-Win 3.5 tool of "Logic

Works" is displayed in Figure 12.

TUSENT I (||ATDlB*tnfli*li&ft I

jjfäwnvtteri
iftiwOwtiprXEt

~d?K?hW>,

iiTyp«|««4J3 ® 1u»W4asftf AeftTyp «a- ZU

BlaeAs.ftTyp*Bem$L^jd*jMiD*stj:i "* 18li»S»<l«Rri«»>MtM>«t j[

L_.

&'Ju*?j*T')»p« it

1

i—T *
S*«Wj»i»n7ifl)e|

|R«iiT*rge2<jTiftB

L f

i

&«4t*J3et7^«0perab«B^I I

IX
"j, r*

i

li j 8hj*£üfflM**fAc«MsnTye« a

'- u ii- nr.n-.nuu.ufmn ITJI-.TIVJ mir j nff R*P*H

|HmEJ%MHl9h*riPüiai*AJwl |

fiedT arsetCafcegsvTvSy bCai« g^r\i

X

^•n j

 •■■■■ ■ ■■■ i."

j Blü6ms£m$p*C;Lt>3T*äTyp#$t

m*ätitsbCai*^aitpim^\ttfy Jk~ j R*aSJ.»SU*SLati>s I

S G ©i-u*?rirn*rj-Un(*i

Figure 12. Entity-Relation Diagram (Logic Works ER-Win 2.0 Database Design
Tool.)

Entities - Relations Attributes

Relation Name Attribute Name
STUDENT

StudentSSN

80

IPy [Type:

Primary

Key

(PK)

Text

Relation Name Attribute Name Key Type
StudentFirstName None Text

StudentLastName Text

RankAbbr Foreign

Key

(FK)

Text

StudentClassNbr Integer

StudentSelection Yes/No

StudentCountry Text

2. ATOINFORMATION

ATODescription Primary Text

StudentSSN Primary Text

3. ATODAY

ATOExecutionTime Primary Integer

ATODescription Primary Text

StudentSSN Primary Text

Selection Yes/No

4. RANK

RankAbbr Primary Text

RankDescrption Text

5. BLUEACFTTYPE

BlueAcftTypeNbr PK Integer

BlueAcftTypeName Text

BlueAcftTypelnComPercent Integer

BlueAcftTypeAbortPercent Integer

BlueAcftTypeFuelPerSortie Integer

BlueAcftTypeAirAirAbilityPercent Integer

BlueAcftAirToGndCapab Integer

BlueAcftAirToGndCapab Integer

AcftFuel Text

81

Relation Name Attribute Name Key Type
Stealth Yes/No

6. BLUEBASE

BlueBaseNbr PK Integer

BlueBaseAbrreviation Text

BlueB aseFullName Text

BlueBasePercentOCA Double

7. BLUEGROUP

BlueBaseNbr PK-FK Integer

BlueAcftTypeNbr PK-FK Integer

BlueAcftAmmount Integer

8. BLUEGROUPEXE

ATOExecutionTime PK-FK Integer

ATODescription PK-FK Text

StudentSSN PK-FK Text

BlueBaseNbr PK-FK Integer

BlueAcftTypeNbr PK-FK Integer

BlueAcftAmmount Integer

9. BLUETASKTYPE

BlueMissionTypeNbr PK Integer

BlueMissionName Text

FEBAlossBasic Double

FEBAlossIfDSA Double

FEBAlossIfDSUP Double

FEBAlossIfDSAandDSUP Double

DofFightProbBasic Double

DogFightProblfDSE Double

DogFightProbIfC3 Double

DogfightProbIfDSEandC3 Double

TermLossBasic Double

82

Relation Name Attribute Name Key Type
TermLossIfC3 Double

TermLossIfDSA Double

TermLossIfDSUP Double

TermLossIfC3andDSA Double

TermLossIfC3andDSUP Double

TermLossIfDSAand DSUP Double

TermLossIfC3andDSAandDSUP Double

ProbNotFind Double

Priority Integer

10. BLUEBOMBTYPE

BlueBombTypesNbr PK Integer

BlueBombTypeName Text

11. BLUEPROPERACFTPERMISSION

BlueAcftTypeNbr PK-FK Integer

BlueMissionTypeNbr PK-FK Integer

BlueProperAcftTypePerMissionNbr Integer

12. BLUEBOMBSPERACFTMSNTYPE

BlueAcftTypeNbr PK-FK Integer

BlueMissionTypeNbr PK-FK Integer

BlueBombNbrPerAcftMsnBomb Integer

13. BLUESORTIESRATEBYMSNACFT

BlueAcftTypeNbr PK-FK Integer

BlueMissionTypeNbr PK-FK Integer

BlueMsnAcftTypeRate Integer

14. BLUEACFTTYPEBO MBLOADANDDISTANCE

BlueSpCharacteristicNbr PK Integer

BlueBombTypesNbr PK-FK Integer

BlueBombLoadAmmount Integer

BlueRangeWithLoad Integer

83

Relation Name Attribute Name Key Tvoe
15. BLUECASBOMBLOAD

BlueAcftTypeNbr PK-FK Integer

BlueBombTypesNbr PK-FK Integer

BlueBombLoadQuantity Integer

16. BLUEWEASELACFTYPEBOMB

BlueAcftTypeNbr PK-FK Integer

BlueBombTypesNbr PK-FK Integer

17. BLUEMISSIONSPECCHARACTTYPES

BlueSpCharacteristicNbr PK Integer

BlueSpCharacteristicDescriptionr Integer

18. BLUEMISSIONCHARACTERISTICS

BlueSpCharacteristicNbr PK-FK Integer

BlueAcftTypeNbr PK-FK Integer

BlueMissionTypeNbr PK-FK Integer
19. SECTOR

SectorNbr PK Integer

SectorName Text

SectorBlueCASPercntNeed Double

SectorBlueSAPercentNeed Double

S ectorBlueReccePercentNeed Integer

SectorBlueFrontLine Integer

SectorBlueReinforce Integer

SectorRedFrontLine Integer

SectorRedReinforce Integer
20. SECTOREXE

SectorNbr PK-FK Integer

ATOExecutionTime PK-FK Integer

ATODescription PK-FK Text

StudentSSN PK-FK Text

84

Relation Name Attribute Name Key Type
CurrentFEBAPosition Integer

GndResults Integer

BluePosition Integer

RedPosition Integer

TotalFEBA Integer

21. REDTARGET

RedTargetNbr PK Integer

RedTargetDescription Text

ZoneNbr FK Integer

RedTargetLatidute Double

RedTargetLongidute Double

RedTargetChinese Yes/No

22. REDTARGETZONE

ZoneNbr PK Integer

RisklnZone Integer

23. REDMISSIONTYPE

RedMissionTypeNbr PK Integer

RedMissionDescription Text

24. REDTARGETCATEGORY

TargetCategoryNbr PK Integer

TargetCategoryDesc Text

25. REDTARGETSUBCATEGORY

TargetSubCategNumber PK Integer

TargetCategoryNbr PK-FK Integer

TargetSubCategDescr Text

TargetSubCategRebRate Double

TargetSubCategRebTimes Integer

26. REDTARGETCATEGORYSUBCATEGORY

85

Relation Name Attribute Name Key Type
TargetSubCategNumber PK-FK Integer

TargetCategoryNbr PK-FK Integer

RedTargetNbr PK-FK Integer

27. REDTARGETOPERATIONAL

TargetCategoryNbr PK-FK Integer

RedTargetNbr PK-FK Integer

ReccePercentOperational Integer

MaxPercentOperational Integer

28. REDTARGETOPER^ ITIONALEXE

ATOExecutionTime PK-FK Integer

ATODescription PK-FK Text

StudentSSN PK-FK Text

TargetCategoryNbr PK-FK Integer

RedTargetNbr PK-FK Integer

ReccePercentOperational Integer

MaxPercentOperational Integer

29. REDBASE

RedBaseNbr PK Integer

RedB aseDescription Text
30. REDACFTTYPE

RedAcftTypes PK Integer

RedAcftDescription Text
31 REDGROUP

RedAcftTypes PK-FK Integer

RedBaseNbr PK-FK Integer

RedMissionTypeNbr FK Integer

RedGroupNbr Integer

RedAcftNumber Integer

86

Relation Name Attribute Name Key Type
RedMissionTypeSortyRate Integer

32 REDGROUPEXE

ATOExecutionTime PK-FK Integer

ATODescription PK-FK Text

StudentSSN PK-FK Text

RedAcftTypes PK-FK Integer

RedBaseNbr PK-FK Integer

RedAcftNumber Integer

RedLosses Integer

33. REDSHELTERSTAT1 US

ShetlerStatusNbr PK Integer

ShetlerDescription Text

34. REDBASEACFTTYP] ESHELTERSTATUS

RedAcftTypes PK-FK Integer

RedBaseNbr PK-FK Integer

ShetlerStatusNbr FK Integer

35. EMPTY20HIGHESTPRIORITYLIST

Priority PK Integer

RedTargetNbr FK Integer

36. REDTARGET20HIGHESTPRIOTIYLISTEXE

Priority PK-FK Integer

ATOExecutionTime PK-FK Integer

ATODescription PK-FK Text

StudentSSN PK-FK Text

RedTargetNbr FK Integer

37. REDBASECATEGOB LYDIFIICULTY

RedBaseNbr PK-FK Integer

TargetCategoryNbr PK-FK Integer

TargetSubCategNumber PK-FK Integer

87

Relation Name Attribute Name Key Type
38. RECCETGTPSN

ATOExecutionTime PK-FK Integer

ATODescription PK-FK Text

StudentSSN PK-FK Text

RedTargetNbr PK-FK Integer

FlightNbr PK-FK Integer

39. FLIGHTDATA

ATOExecutionTime PK-FK Integer

ATODescription PK-FK Text

StudentSSN PK-FK Text

FlightNbr PK Integer

BlueBaseNbr FK Integer

BlueAcftTypeNbr FK Integer

BlueMissionTypeNbr FK Integer

SectorNbr FK Integer

TargetSubCategNumber FK Integer

TargetCategoryNbr FK Integer

RedTargetNbr FK Integer

BlueBombTypesNbr FK Integer

FlightBlueSortiesAssigned Integer

MssnPkgNbr Integer

40. BLUESORTIE0_7ACFTBOMBTGTATSUB

TargetCategoryNbr PK-FK Integer

TargetSubCategNumber PK-FK Integer

BlueAcftTypeNbr PK-FK Integer

BlueBombTypesNbr PK-FK Integer

BlueSortieO_7 Integer
41. BLUEPRIMARYUNI1

PrimeUTC PK Text

88

Relation Name Attribute Name Key Type
PrimeUnitName Text

PrimeUnitAmmunition Integer

42. DEPLOYDATA

PrimeUTC PK-FK Text

ArmyDivs Integer

Nbr2 Integer

Nbr3 Integer

Nbr4 Integer

43. REPORT

Reportid PK Integer

ReportLabel Text

ReportText OLE

Object

44. PARAMETERS

Hi_5Damage Integer

Lo_5Damage Integer

Hi_7Damage Integer

Lo_7Damage Integer

NotFireAt Integer

DogFightB asicLoss Integer

KillRatioBad Integer

KillRatioEven Integer

KillRatioGood Integer

MinWorstRatio Integer

MinBestRatio Integer

PercentRedDCA Integer

PercentRedOCA Integer

PercentRedFlying Integer

MaxPercentRedAcftLost Integer

89

Relation Name Attribute Name Ke\ Type
RedAbort Integer

RedFEBALoss Integer

RedFtrLoss Integer

RedTernLoss Integer

RedNotFind Integer

DoAndShowArmyMissions Integer

ShowEnemyBpmbersOverBlueBases Integer

TightnessFactor Integer

AEVIfudgeFactor Integer

PercentDailyDegradeGnd Integer

AcftGndEquivFactor Integer

GndDiffToMoveFEBA Integer

TopLat Integer

BottomLat Integer

LeftLong Integer

RightLong Integer

Table 31. Entities - Relations Attributes.

The Database Entity-Relation Diagram of Figure 12 and the Relations'description

of the table above can also be used as Database design for the implementation of the final

Application. The prototype's database contains some extra relations that are used for the

calculations only and should not be included in the final application database. This kind

of relation has the prefix "TMP" for easy recognition from the main relations of the

database.

90

The prototype was a combination of ACCESS 2000 Forms, Visual Basic code,

queries, and macros to provide user friendly GUI. The GUI design and probably the

implementation can be used for the final application.

The queries are written by the special ACCESS 2000 SQL. In the case when a

query is very complicated to be executed, nested queries that construct temporary tables

are used. The use of nested queries reduces the prototype's performance because of its

extensive use of the storage devices, which are the slowest components of a computer.

On the other hand, it offers the functionality that the prototype needs.

Macros are used mainly for two reasons to create a sequence of events (queries)

and to offer runtime information to the GUI.

Reports are used only for printing necessities and they are the printable versions

of GUIs (Forms.)

C. USER MANUAL

1. Installing CAMPEX Employment Module Prototype

• Recommended System: IBM PC-compatible 486 computer running

Microsoft WINDOWS (NT 3.5 or 98) or higher, with minimum 16 MB

RAM and minimum 256-color monitor.

• Copy the file CAMPEX2000.mdb from its source to desktop (a shortcut is

created.) The size of the prototype is expected to be 10 MB when it needs

ACCESS 2000 to run (current version) and above 25 MB if it can run as

an independent application.

91

2. Running the CAMPEX Employment Module Prototype

• Double click on the application icon and the program starts to execute.

• In every screen student has the choices "Return" and "Exit." With

"Return," the system returns to previous screen, and with "Exit," the

system quits the application.

Figure 13. Return and Exit

3. CAMPEX Employment Module Initial Screen

The Initial screen of CAMPEX Employment Module appears with one menu bar

on the top of the screen named "Student", with three choices:

• "New Student" must be selected if the student executes the program for

first time.

• "Select Student", must be selected if student has already input his personal

information in the program.

• "Exit" to quit the application.

92

jffsstxiBnt

Ig BetfSSyderifc

Figure 14. Initial Screen

"New Student"

• An empty "Student" record is displayed.

• Enter the necessary student information.

• Fill all data fields.

• Select return.

93

[5 Sudan*

Bälf F ' - * sTS, ^ri «.*55 c- 3,
4*t?

Figure 15. New Student

5. "Select Student"

• System returns a list of student names.

• Select a name from the list.

• Select "Continue."

94

-ifftxf

!is-¥sa? - 'V «* V - *::.;;"•*?B ft >•>/':? 5L-- a.|

SELECT STUDENT".

Select your Name:

ffpour
buttc

111111111

CONTINUE RETURN

Figure 16. Select Student

Antonios Ha

"Start Employment Module"

ig Student ^ ^___ [miaiM

iVs suggest you to &•«*? ifce Pragram Reports at least the first ümeyoiirm this program (some may
contain critical information.} You may also view them later by using the "Options" menu off main

Click to see the Program Reports Click to continue with program

RETURN flvEXIT::;

Figure 17. Choose to see Reports or Not

• "Click to See the program Reports" must be selected if the student wants

to see the "Introductory Reports."

95

• "Click to Continue with Program" must be selected if the user wants to

continue with the program without seeing the "Introductory Reports."

7. "Click to See the Program Reports''

A screen with the first Introductory Report will be displayed. Student can see the

report by using the right screen scrollbar, by clicking inside the report and by using the

keyboard up and down arrows. Notice that the student has seen the whole report only if

he is able to see the note "Last Line," written with red letters.

 , .. _ _ ' ,J?ffi*t
BäÄf *■'>**...(■* «*• * * 5 _-•*}.I

: Weather Report
I Dateline 31 Mar97

High altitude cloud cover is expected over the area of operations for the next three weeks.

Satellite recce sources will be of minimum use during this time.

W*»M*«;«W*fcM!W*im-M**tM*MiM**«Mit^Qg^ Liflfi i^i**'iiii'iiiM-i**''M*'*iii'*-^^iiii<ii

Figure 18. Introductory Report

Select (►) to continue with the next "Introductory Report."

96

8. "Click to Continue with Program"

A screen with the "Ground Combat Units as of Day 1" will be displayed. This

report is always empty, because the information it contains is a product of "CAMPEX

Deployment Module" that has not yet been implemented.

:• a sä? ssöft^'^'^&si^^v »]>♦« ««"s-a-'o.i
SAW

Figure 19. Ground Combat Units

Select "Continue."

9. "ATO Selection"

• "Select an ATO" must be selected if the student wants to execute an

existing ATO.

• "If the ATO is not on the list Click the Button to Enter" must be selected if

the user wants to enter an ATO that is not existed in the list.

97

10. "Select an ATO"

• Select an ATO description.

• Select an ATO day.

Figure 20. ATO Selection

If the student selects an ATO day, all the days following the selected day and their

information will be deleted.

11. "New ATO "

An empty ATO record is displayed, if the student selects "If the ATO is not on the

list click the Button to Enter".

98

Enter newÄTO Name:.: | ('I^'W&WMB,

RETURN EXIT

Figure 21. Enter a New ATO

• Enter the necessary information.

• Select "Return".

Program returns to the previous screen and user must select an ATO to continue.

12. "Main Menu Screen"

On the top of the screen a new "Menu Bar" will be displayed with three

choices:

• "Options."

• "ATO Planning."

• "Intel and Results."

99

Student Ogöoris 'jtfOMwttg »fei ar*ä RasuBs_

i-'B'äay *>gy«'~£ jJI; VC->"«|►-««es»""©>ä-"gl
d*L>

CAMPEX MAIN MENU

Figure 22. Main Menu

13. "Options"

• "Open Introductory Report" must be selected to see an Introductory

Report.

• "Area Map" must be selected to see the Area Map.

• "Change ATO" must be selected to return to the state of selecting an ATO.

• "Blue Basing Summary" must be selected to see the blue "Basing

Summary" report.

• "Sorties Available" must be selected to see the blue "Sorties Available"

report.

• "Analysis" must be selected to see the blue "Analysis" report.

100

asfe«tjC^s"ÄfbPi5nn^"MSlat5dRÄ j£Ü
j9 i OfenWroReport Hl'lÜ^l^iH!^« fill' (?>,

. ÄreaMap

Change ATö

BteBasrigSusäjiarjr

Sa^es Available • CÄMPEX MAIN MENU 1
Analyse •

pr' ■aj ^
^^^^^^^^^^^^^^^^^^^^^s
IlSiBIliiil^BlllSI
^ÄSftft^K&^S^

SffiHHHHHl I®

Figure 23. Options Menu

14. "Open Intro Report"

System returns a list with all Introductory Reports' Titles.

• "Select a title from the list." The selected Report will be displayed,

pressing the "Return" button will return to the "Report Management

Screen."

101

Figure 24. Report Management

15. "Area Map "

Figure 25. Area Map

102

16. "Change ATO"

"ATO Selection" screen will be displayed. User must follow the same known

sequence as in the section 4.b. 11.

17. "Blue Basing Summary "

, Bangkok ■
CHiano Mai ■

Warn Rtiori©

Antostäüs; MaS:

;; eiilJ H;;:B &&$H& §.U SVS iA^XfP^JSi

:S«E» :\k.»s4 ;:]>.;

ÄAlS:;«,;' AS: ,:<>■:'.<>:.;:.::

12 ■:,.,:.,.{> .':,;;::...

48 o
24 s; :o;S

4 .'. 0.. ;..;
^'-..y 2&.. x.. "."'"■ 2 .':'■'■"

■;.;aa< "•:.,: 1'OV ■<:''

24 o

24 '■f.:;! ."o':.>':'iv::

24 :-.'...?>■ :0,:r,:^.
34 "n'':■■:-.■

PRINfWRETURN EXIT-

Figure 26. Blue Basing Summary

18. "Sorties Available "

Figure 27. Sorties Available

103

19. "Analysis"

Figure 28. Analysis

20. "ATO Planning"

Student Optans | ATO Plaining Intel andaasute

PlanEdiSMtesfcra

Estimated eeajle ►

! Dal^f Summaries
CärtBlMteaipn Or Package

FlyATOMtestens '

H5iM ».«itfl©-^^-.

APEX MAIN MENU

illliil

Figure 29. Menu "ATO Planning"

104

• "20 Top Priority Targets" must be selected to describe the 20 targets with

highest priority.

• "Plan Edit Missions" must be selected to plan missions for an ATO.

• "Estimated Results" must be selected to see the "Estimated Results" report

of his planning.

• "Flights Without Sorties" must be selected to see the "Flights Without

Sorties " report.

• "Daily Summaries" must be selected to see the "Daily Summaries " report.

• "Cancel Mission or Package" must be selected to delete a planned mission

or package of missions.

• "Logistic Requirements" must be selected to see the "Logistic

Requirements " report.

• "Fly ATO Missions" must be selected to execute the planned ATO.

System changes state to the next ATO day.

• "Ground Forces Deployed" must be selected to see the "Ground Forces

Deployed " report.

105

21. "20 Top Priority Targets "

LisigigJ^

Red r^ri: prionity Select a Target \

■'■■■" ■■■ ^ «flU
B LIÜ

| m ■3'" Mengzi Airbase Ü

■ 8
9
10
11
12
13
14

Bai Thuong Airbase —fig
Pleiku Airbase B
Cam Ranh Airbase B
Kep Airbase Ej
Haiphortg/Kien Airbase %;H
Phu Cat Airbase H
Tuy Hoa Airbase , Ji

n
^■HHHHB

9
§f ins!
H 5 «im
|| ^Hl jH Jggj
■ 16||[PJ9

RETURN EXIT

Figure 30. List of 20 Targets with Highest Priority

Select the priority number, and then select a Target from the list. The user

cannot select the same target more than once in a Priority List.

22. "Plan Edit Missions "

• "Aircraft Type."

• "Blue Base."

• "Red Base or Target Number."

106

• "Target Type."

• "Zone of Target."

• "Task Type."

• "Packages."

• "List All."

Figure 31. Flight Categories

Only the Flights in the planned missions will be displayed. Selecting the "List

All" option will results in the display shown in Figure 32. The user can see the planned

missions up to that moment now by the selected choice.

Select "To Enter a new Flight or to edit an existing click the button below" to

modify flights.

107

Figure 32. Assigned Flights By Category

23. "Enter or Edit Flight "

• "To Enter a new Flight Enter the Flight Number and click on the Button

below" must be selected to enter a new Mission.

• "The numbers in the list already exist so you cannot enter them but you

can edit them" must be selected to edit a mission.

• Select an existed flight number or enter a new number will result in the

display shown in Figure 34.

108

Figure 33. Enter or Edit a Flight

24. "Flight Data "

• Enter the necessary flight information.

• Fill all data fields.

• Select "Return."

109

.FLIGHTS-DATA.* Öclyspassi:

Flight Number;

Mission or Task: 6

Supported Sector; B
'■':.' Target;;-? 8ilä

Targets For Recce: ~-

Target Category: ■:■

Target Clearance:'
Target SAM:

Aircraft Type: | 13 1

Blue Base:] "°6 |

Bomb Load Type:] 0 |

Bomb Quantity:-!

Mission Package: j

0

KB
Target Zone:

IEW i
1 &i i M

1 i
1 i
1 1
^ÄSiiiMl^SÄ^^iiÄ

|EA-6 i|
TUN i|

ii
0 £:SO jjIBf 0

il

far fie S§ ^cfe^:|W»ifep;T|^; fegimpmi assign ä B

||p Select four targets Only for Recce

For fts Sefecte? Mssfa« F^pe ycst/ csrmai 0$$!gn m f

Farif»SeiecfedMission Type you cmnol select a Sor

fesr pe sheetedMMsäonJyps'^Öu must select a fsrgst

RETURN EXIT

Figure 34. Input or Update Flight Data

25. "Estimated Results Choices"

"Aircraft Type."

"Blue Base."

"Red Base or Target Number."

"Target Type."

"Zone of Target."

"Task Type."

"Packages."

"All Flights."

110

fgufent Opfore ;js,TO Planung inal'andRagjIa

•'B:8&y' »Top«-lw«fT«irge<s
"""———"—"--— p|ar>6dttMBs»ns

'«£KU
■*t:sr «i^wltf" ©'S' SU|i

Aircraft Type * 1 «MÜ
WJghtett«wutS<st«>s Skje83Seä *-ie
DWly Surofiwm* »«Sdni Of TWT)« AC-WO

Cancel Mission Or Package Target Category =-lM

togs*** RoquiKawiriis T.-rjuiZonB *»'
Fly ATO Missions 'a*-»;r . -IS

Grctjnd R)rc8* Deployed MteSun Package
ASRIcJits ' ►

F-ie
p-tu
s=-m
■•■•.i?

*-K
*-&

ft^>i?««*»v"^" r- <^^^ *'^^$$|! SA-S

MENU

Figure 35. Estimated Results Choices

Each of these choices leads to another menu of choices that

describes a filter for the way that the user can see the "Estimated Results" report.

26. "Estimated Results"

Figure 36. Estimated Results
111

27. "Flights without Sorties"

iFUGHJS WTHQmmQWmESi :; Ociyseas 1
! Flight Aircraft
! Numfeer Tvse

Blue Base
Ahrrevbiisri

vBlusBaseW»!« See^rl Target:!
"#':■>- NtimbärT

: Target Dessriptiors,; i,^ .Targe

Figure 37. Flights without Sorties

28. 'Daily Summaries "

:- -vPLANNEE^SORTIES BY MISSION TASK TYPE FOR DAY «uu*>--,
r-loc i j u o "~ ; £J ■
F-16 z 0 Ö Ö 0 I ; ö b ; 2 1

FA-18 (3 10 Ö 0 11 0 21 1
OA-10 22 22 I |H jg 22 Ö | 0 33 I 2 0 j 0 ! 0 j j 59 1

50 Ä

40 jj

30 S
20 S

r^T%

lÖliliÄ

Q mm ..-..- -! n.,,1,, ■ ,....„. ,.,.

'■CÄSJ!

RN

DCA EW OCA

I * Sslllllllll IS 3? BlllPi^B

Figure 38. Daily Summary

112

29. '' Cancel Mission or Package"

CANCEL MISSIONS OR IISSIONS. PACKAGES:

T^pftl litna [Package 8.? M Asss<p

1 \ CftS i 5ectoc2

Select a Mission to Cancel

A-18 1 Roiat

Select a Package to Cancel the Missions

RETURN

Figure 39. Cancel Mission or Missions' Package

• "Select a Mission to Cancel."

• "Select a Package to Cancel the Missions."

System returns a List of the planned missions or packages (depending on the

user's choice.)

Select a Mission or Package Number. The system deletes the selected mission or

the missions of the selected package.

113

30. "Logistic Requirements "

Figure 40. Logistics Requirements

31. "Fly ATO Missions"

System executes mission and changes state to the next day.

32. " Ground Forces Deployed''

As shown Figure 18

114

33.

Student Options

Intel and Results"

»ftrfi

OrrentReece

öwmy 0*8r Sie Bass»

Creond War Summary

View Measures of Merit

»»•day's tas$»&5f Task Type

^Bats-day's Losses By Acft Type

*** Cfi&b» ©•

MAIN MENU

Figure 41. Menu Intel Results

They are active only if the user has executed a planning (Fly an ATO):

• "Sorties Effect" must be selected to see the "Sorties Effect" report of his

planning.

• "Current Recce" must be selected to see the "Current Recce" report of his

planning.

• "Enemy Over Blue Bases" must be selected to see the "Enemy Over Blue

Bases" report of his planning.

• "Ground War Summary" must be selected to see the "Ground War

Summary" report.

• "View Measures of Merit" must be selected to see the "View Measures of

Merit" report.
115

• "Yesterday Losses by Task Type" must be selected to see the "Yesterday

Losses by Task Type" report.

• "Yesterday Losses by Acft Type" must be selected to see the "Yesterday

Losses by Aircraft Type" report.

Depending on the user's choice, the selected report will be displayed. In addition,

user can choose to print the report.

Weight of Effort By Army-Recce-
Other

Blue Attrition Percent Loss Ratio (Red/Blue)

Figure 42. Sample Intel Report "Measures of Merit"

116

VI. CONCLUSIONS

This thesis examined three distributed component architectures: Microsoft's

DCOM, Sun Microsystems's JENI, and the OMG's CORBA, and concluded that they

have similar capabilities, but each has distinct strengths and weaknesses. CORBA seems

to be the best solution for using legacy applications as components because of its ability

to cross languages boundaries. In practice, however, most old applications cannot be used

as components because they are not implemented using object-oriented technology. Thus,

it is necessary to redesigned and re-implement the legacy applications using object-

oriented technology before they can be used as distributed components. In this case, JINI

in combination with the Java programming language comprises the most complete

solution. JINI implementations are fully compatible to each other and Java supports

extensive object-oriented design and implementation.

The analysis and redesign of CAMPEX proved the concept that old applications

are not useless. The old version of CAMPEX was the main source for the Requirements

Analysis and Design Specification. The Requirements Analysis was a product of reverse

engineering the old CAMPEX functionality and much of the detailed design are resulted

from reverse engineering the CAMPEX source code. The process of reverse engineering

was not cost free. It required more time and added difficulties and risks to the whole

process.

Using the Unified Modeling Language (UML) for the analysis and the design of a

software product adds risk to the development process when the designer is not

experienced in using the language. The primary advantage of the UML Methodology is

that the processes overlap each other, thus the designer gain a more complete knowledge

117

for the whole problem. On the other hand the overlap in the UML process consumes

additional time. Moreover the design results are often ambiguous and different people

can design the same product differently and different people can read UML products

differently. For UML to give a clear view of a problem to everyone involved in the

development process, it must be used in combination with customer and team reviews.

CAMPEX uses a "Two Tier Architecture" through the choice of ACCESS 2000

for the prototype implementation. A "Three Tier" object-oriented design could provide

added benefits only under special circumstances. The designer must keep in his mind that

one can validate fully the Requirements Specification, use the same GUI design for the

final application and verify the correctness of objects, but one can only partially validate

the design of object interactions.

Keeping the prototype's Database and GUI and implementing the computations

with a classic object-oriented programming language will complete the CAMPEX

Employment Module implementation. CAMPEX will be the basis for implementation of

other Air War College planning modules. Parts of CAMPEX will be components of other

modules, and CAMPEX itself will be a component in a distributed environment where

students exercise air campaign plans.

118

APPENDIX A - USE CASES

USE CASE (Ul): START EMPLOYMENT MODULE

Actors:

Purpose:

Overview:

Type:

Cross References:

Student

Select to start the CAMPEX Employment Module

Student Selects to use the CAMPEX Employment Module, the

program displays the Introduction Reports and "Ground Forces

Report." Alternative the student can select to see only the "Ground

Forces Report" and continue with the program.

Primary and essential

R3.1, R3.2, R3.3, R3.4, R3.4, R3.5, R3.6, R3.6, R3.7, R3.8, R3.9,

R3.10, R3.11, R3.12, R3.13, R3.14, R3.15, R3.16, R3.17, R3.18,

R3.19, R3.20, R3.21, R3.22, R10.1, R10.il, R10.12, R10.13,

R10.14

Use Cases: -

Section: Main

Typical Course Events

Actor Action

1. This use case begins when student

selects to load the CAMPEX

Employment Module.

System Response

Displays the initial screen of

119

CAMPEX Employment Module

3. Selects "Continue"

4. Asks student if he wants or does not

want to see the Introduction Reports.

5. The student chooses an option to

continue:

To see Introduction Reports, go

to "Intro Screen" section

To continue without seeing the

"Introduction Reports," go to

"Continue" section

6. Displays Ground Combat Units as of

Day 1 screen

7. Selects to Continue

8. Displays the ATO Management

screen

Alternative Courses: -

Section: Intro Screens

Typical Course Events

Actor Action

1. Selects to see "Intro Screens"

System Response

120

4. Selects to Continue

6. Selects to Continue

8. Selects to Continue

10. Selects to Continue

12. Selects to Continue

14. Selects to Continue

16. Selects to Continue

18. Selects to Continue

2. Gets all the Introduction Reports

3. Displays "Read me file for

CAMPEX Employment Module"

5. Displays the "Execute Order"

7. Displays "DIA Intel Update"

9. Displays "Thai Forces Available"

11. Displays "Weather Report"

13. Displays "Navy Update"

15. Displays "Weapon Availability

Update"

17. Displays "Program Notes"

19. Displays "Bomb Damages

Assessment and Target Definitions"

20. Selects to Continue

121

21. Displays "Analysis and Corrections"

Section: Continue

Typical Course Events: No additional events

USE CASE (U2): STUDENT INFO

Actors:

Purpose:

Overview:

Type:

Cross References:

Student

Student identifies, himself

Student inserts his personal information in the CAMPEX. If he has

already entered his personal information just selects his own name.

Alternative he can change his information.

Primary and essential

Rl.l, R1.2, R1.3, R1.4, R1.5, R1.6, R1.7, R10.il, R10.12,

R10.13.R10.14

Use Cases: "Start Employment Module" Use Case (Ul)

Section: Main

Typical Course Events

Actor Action

1. This use case begins when student

selects to identify himself to execute

an exercise

System Response

2. Presents available "Student" options

122

Chooses:

Select an "Existing User Name,"

go to "Select Existing User"

section.

Enter a "New User," go to "New

User" section.

"Change Student Information," go

to "Change User Information"

section.

Section: Select Existing User

Typical Course Events

Actor Action

1. This use case begins when student

selects "Existing User"

3 Chooses his name

Presents CAMPEX Main Menu

screen

System Response

2. Presents available students' names

4. Creates the selected student

instantiation

123

Section: New User

Typical Course Events

Actor Action

1. This use case begins when student

selects "New User"

3 The student enters requested personal

information

4. Select to "Return"

Section: Change User Information

Typical Course Events

Actor Action

1. This use case begins when student

selects "Update User Information"

System Response

Presents user input screen

5. Stores student entered information

6. System returns student to previous

GUI from where student can follow

the process of section "Existing

Student"

System Response

2. Presents the selected user

information

124

3 The student inputs his new

information.

4. Select to "Return"

5. Stores student entered information

6. System returns student to previous

GUI from where student can follow

the process of "Existing Student"

section.

USE CASE (U3): LOAD AN ATO

Actors: Student

Purpose: Load an ATO

Overview: Student selects an ATO. With completion student is entered to

"Main Menu" and the selected ATO is loaded.

Type: primary and essential

Cross References: R4.1.R.4.2

Use Cases: Student must have completed the

• "Start Employ" Use Case (U1)

• Student must already entered the ATO that wants to

load

Section: Main

125

Typical Course Events

Actor Action

1. This use case starts when the student

selects to "Load an ATO"

2. Selects an existing ATO from the

list.

3. Select to continue

System Response

3. Creates and updates the necessary

objects of the selected ATO

4. Displays the "Main Menu" screen of

ATO Employment Module

USE CASE (Ü4): MANAGE AN ATO

Actors:

Purpose:

Overview:

Type:

Cross References:

Student

Mange an ATO

Student selects to manage to an ATO. With completion selected or

new ATO information should be in CAMPEX Employment

Module.

primary and essential

R4.1,R4.3,R4.4,R4.5,R4.6

Use Cases: Student must have completed the

126

• "Start Employment Module " Use Case (Ul)

• "Student Info" Use Case (U2)

Section: Main

Typical Course Events

Actor Action

1. Chooses one of the "ATO 1.

Management" options. Student

selects

"Start a new ATO from

scratch," go to "Start new ATO

from scratch" section.

"Erase an existing ATO," go to

"Erase an ATO" section.

"Copy an ATO to a new file,

load new," go to "Copy an

ATO" section.

2. Continue with program

Section: Start a new ATO from scratch

Typical Course Events

System Response

3. Displays the ATO Selection screen

127

Actor Action

1. Selects Start a new ATO from

scratch

3. Input the new ATO information

System Response

2. Asks to enter the new ATO

information

4. Stores the new ATO information

Section: Copy an ATO

Typical Course Events

Actor Action

1. Selects Copy an ATO

2 Enters the new ATO name

4. Selects an existent ATO

System Response

3. Creates necessary ATO objects

5. Updates the entered ATO to the

selected ATO information.

Section: Erase an ATO

Typical Course Events

Actor Action

1. Selects Erase an existent ATO

System Response

128

2. Selects an existent ATO

Deletes selected ATO File

information

4. Displays the "ATO Selection" screen

USE CASE (U5): DESCRIBE THE 20 TARGETS WITH HIGHEST PRIORITY

Actors:

Purpose:

Overview:

Type:

Cross References:

Student

Fill the list with 20 targets with highest priority

Student has decided which targets of his plan have the highest

priority. Student edits the list of 20 targets with highest priority.

After the completion of this use case the student's "20 Highest

Priority Target List" can be displayed by the application.

Primary and essential

R5.1, R5.2, R5.3, R5.4, R10.2, R10.il, R10.12, R10.13, R10.14

Use Cases: Student must have completed:

• "Start Employment Module" Use Case (Ul)

• "Student Info" Use Case (U2)

• "Load an ATO" Use Case (U3)

Section Main

Typical Course Events

Actor Action System Response

129

2.

This use case begins when student has

already decided about the 20 targets

with the highest priority

Student selects "Top 20 Targets"

4. Student chooses a Priority List place

6. Student select one of the displayed

targets

3. Displays the current list of top 20

targets

5. Displays all targets

7. Updates targets priority

If the target is already in the list then the program doesn't accept the selection and

displays message to the student to select another Target.

USE CASE (U6): PLAN AN ATO

Actors:

Purpose:

Overview:

Type:

Cross References:

Student

Enters student's plans

Student enters new missions, or edits old missions, or erases

missions. With completion of this Use Case the student's plans

have been entered.

Primary and essential

R5.5, R5.6, R5.7, R5.8, R5.9, R5.10, R10.2, R10.il, R10.12,

130

R10.13.R10.14

Use Cases: Student must have completed:

• "Start Employment Module" Use Case (U1)

• "Student Info" Use Case (U2)

• "Load an ATO" Use Case (U3)

Section: Main

Typical Course Events

Actor Action

1. This use case begins when student is

ready to enter his plan in the

application

2. Student selects:

"Plan an ATO," go to "Plan Edit

Mission" section

"Cancel a Mission or a Package of

Missions," go to "Cancel a

Mission or a Mission Package"

section

System Response

3. Return to Main Menu screen

4. Displays list of missions or packages

of the selected by student type

131

Section: Plan or Edit a Mission

-

Typical Course Events

Actor Action System Response

1. Student select to Plan or Edit a

Mission

2. Displays the available options that

user can see the lists of existent

Missions.

3. Chooses one option

4. Displays list of missions of the

student's selected type

5. Selects to Enter or Edit Mission

6. Asks from the student to enter a new

mission number or to select a

mission from the list to edit

7. Student enters or selects a mission

8. Displays an input form for the

entered or selected mission

9. Enters the mission's information

10. Exits from the form

11. Enters new mission information to

132

the system

Section: Cancel a Mission or a Missions' Package

Typical Course Events

Actor Action

1. Student selects to Cancel a new

Mission or a Mission's Package

2. Selects an existent mission or

System Response

package to cancel

3. Deletes selected mission or package

of missions

USE CASE (U7): FLY AN ATO

Actors: Student

Purpose: To execute the planned missions

Overview: Student is running fly missions. System calculates the result of the

planned missions. Saves the results in a new ATO. Loads the new

ATO.

Type: Primary and essential

Cross References: R6.1, R6.2, R6.3, R6.4, R6.5, R10.2, R10.11, R10.12, R10.13,

R10.14

Use Cases: Student must have completed:

133

• "Start Employment Module" Use case (Ul)

• "Student Info" Use Case (U2)

• "Load an ATO" Use Case (U3)

• "Plan an ATO" Use Cases (optional) Use Case (6)

Section: Main

Typical Course Events

Actor Action

1.

2.

This use case begins when student has

finished his plan editing

Student selects "Fly ATO"

System Response

3. Calculates the results of the planned

missions

4. Creates a new ATO

5. Saves the results of the calculation to

the new ATO

6. Loads the new ATO

USE CASE (JUS): INITIAL INFORMATION

Actors:

Purpose:

Overview:

Student

Inform student for the initial data of an ATO

Student asks for initial information. With completion of this Use

134

Type:

Cross References:

Case the student has seen or printed the information that he has

asked for.

Primary and essential

R7.1, R7.2, R7.3, R7.4, R7.5, R7.6, R7.7, R7.8, R7.9, R7.10,

R10.2, R10.11, R10.12, R10.13, R10.14

Use Cases: Student must have completed:

• "Start Employment Module" Use Case (Ul)

• "Student Info" Use Case (U2)

• "Load an ATO" Use Case (U3)

Section: Main

Typical Course Events

Actor Action

1. This use case begins when student has

loaded an ATO or in any moment of

the program

2. Chooses to see actual data by:

"Flights without Sorties"

"Daily Summaries"

"Logistic Requirements"

"Blue Basing Summary as of Start

of Current Day"

"Sorties Available to Task at

System Response

135

Airbases"

"Analysis"

"Recce for Targets at Start of

Current Date"

5. Chooses one option:

print report, go to "Print Report"

section

exit

Section: Print Report

Typical Course Events

Actor Action

1. Selects "Print".

4.

Calculates data to create the report

Displays the selected report

6. Displays the Main Menu screen

7.' Displays Main Menu screen

System Response

Prints the displayed report

USE CASE (U9): ESTIMATED RESULTS

Actors:

Purpose:

Overview:

Student

Display the estimated results by the student plan before these plans

execute

Student asks for the estimated results. With completion of this Use

136

Type:

Cross References:

Section: Main

Case estimated results are displayed on the screen.

Primary and essential

R8.1, R8.2, R8.3, R8.4, R8.5, R8.6, R8.7, R8.8, R8.9, R8.10,

R8.ll, R8.12, R8.13, R10.2, R10.il, R10.12, R10.13, R10.14

Use Cases: Student must have completed:

• "Start Employment Module" Use Case (Ul)

• "Student Info" Use Case (U2)

• "Load an ATO" Use Case (U3)

• "Plan an ATO" Use Cases (Optional) (U6)

Typical Course Events

Actor Action

1. This use case begins when student has

finished (editing) his plan editing

2. Student selects "Estimated Results"

System Response

4. Chooses one option

6. Chooses available options

Selects "Return"

Selects "Print", go to the "Print'

3. Displays the available reports that

user can see the estimated results

5. Displays report of estimated results

137

section

Section: Print

Typical Course Events

Actor Action

1. Selects "Print"

USE CASE (U10): ACTUAL RESULTS

10. Displays Main Menu screen

System Response

2. Prints the displayed report

Actors:

Purpose:

Overview:

Type:

Cross References:

Student

Inform Student for the Results Reports of an ATO

Student asks for Information. With completion of this Use Case,

the student has seen or printed the information that he has asked

for.

primary and essential

R9, R9.1, R9.2, R9.3, R9.4, R9.5, R9.6, R9.7, R9.10, R9.ll,

R9.12, R9.13, R9.14, R9.15, R9.16, R9.17, R9.18, R9.19, R9.20,

R9.21, R9.22, R9.23, R9.24, R9.25, R9.26, R9.27, R10.2, RIO. 11,

R10.12,R10.13,R10.14

Use Cases: Student must have completed:

• "Start Employment Module" Use Case (Ul)

• "Student Info" Use Case (U2)

138

"Load an ATO" Use Case (U3)

"Fly an ATO Missions" Use Case (U7)

Section: Main

Typical Course Events

Actor Action

1. This use case begins when student has

flown an ATO and at any other

moment of the program after that

2. Chooses to see actual data by:

"Cumulative Summary During the

Previous Date"

"Current Recce"

"Enemy Over Blue Bases"

"Ground War Summary"

"Measures of Merit"

"Yesterday Looses by Task Type"

"Yesterday Looses by Aircraft

Type"

"Final Target Status"

System Response

Calculates data to create the report

Displays the selected report

5. Chooses one option:

139

print report, go to "Print Report"

section

exit

6. Displays the Main Menu screen

10. Displays Main Menu screen

Section: Print the Report

Typical Course Events

Actor Action

1. Selects "Print".

System Response

Prints the displayed report

USE CASE (Uli): MAP

Actors:

Purpose:

Overview:

Type:

Cross References:

Student

See the map of the exercise area

Student selects to see the map by Main Menu. With completion

map is displayed on the screen

Primary and essential

R10.2.R10.3

Use Cases: Student must have completed:

• "Start Employment Module" Use Case (Ul)

• "Load an ATO" Use Case (U3)

Section: Main

Typical Course Events

140

Actor Action

1. This use case begins when student

selects from "Main Menu" screen to

see the "Exercise Map."

USE CASE (Ü12): SEND EXERCISE

System Response

Displays the Map on the screen

Actors:

Purpose:

Overview:

Type:

Cross References:

Section: Main

Student

To send the results of an exercise to "Air University"

Student must be connected to the "internet" first. Then, he selects

Option of CAMPEX "Send Exercise Results to the Air University"

and selects an exercise from the displayed. With the completion of

this use case the selected exercise results are been sent to the Air

University server.

Primary and essential

R2.1, R2.2, R2.3, R2.4, R10.15

Use Cases: User must have completed the

• "Student Info" Use Case (U2)

• User must have connected to the Internet

Typical Course Events

Actor Action

1. This use case begins when student

System Response

141

decides to send the result of his

exercise to the server of Air War

College

2. Connect to Internet

3. Selects "Send the Result to the Air

War College"

4. Collects the necessary information

5. Sends the necessary Information to

Air College Server

142

APPENDIX B - SYSTEM SEQUENCE DIAGRAMS

SELECT STUDENT

s: Student :GUI

Sel6ct"SmdalS«wices'i;)

sekctStudaflNamg)

: Application

j:mitStudaritSemc65 BUlSaipt

s:= selsctStutat (SSN): Sairt.

GUI maps Stutat
jwiMsto SSN i

iDatabase

ft:=getStudait():StJidfll

YK): Student

i$dai*SüidöÄ(5t,No)

5t'= getaudflit(SSN):
Stndrat

iipdateStndati^Yts)

Stuteds ±

Figure 43. Sequence Diagram "Select a Student'

143

ADD STUDENT

s: Student :6DI

Select "Studmt Sevices^)

fcpt SüidmtßSNjfflli,

fiistHäm*, kjüläme, counitiy,

address, e-Iufeii, section)

implication

s:miSüidalS«mces GUISript

4ddStodät(SSNifflk,

fiKtHäme;kjtNne,

country, »ddress, e-Mdl,

section)

User öters Studtt

st:=getStuta():SÄ

iddSciidfflt(st)

Stute *

Figure 44. Sequence Diagram "Add Student'

144

START EMPLOY

s; Student :GUI

Sekct"CoHtmiiewih
Introduction Reports'^)

Select "Continue wih Ground

CcdbstlMjesofDeyrO

report" g^ttaoReportsQ:
Script

s:= getReportf'Groimd
Ms"): Saft

:Database

i := get3htroRepctt(): Report

gu := getGrmmdM(): GroundlM

r ~ m&Report("Ground Ms"}.
Report

updst*Report(rigu): Report

Repeatedforill ■
InrrcäicüüftRfofc

Repejtedfbrill ^
ßrouidürafe

lsHapy,bcw(BG»Tiiil i^

"Dtjijsuiitljjii" kit

Figure 45. Sequence Diagram "Start an ATO'

145

SELECT ATO

s: Student :GUI

Select "Changs ATQ'Q

Select & ATO (description/lsy)

: Application

s :=init£ekctAT 0 &UI: Saint

s:=lo«iATODsy(SSN,
desaftki, day): Script

:Database

st:= g6tStote(s6kcti(m=Y«5): Student

4:=getAT0(st):AT0

id:=getATQD#):ATQ

4dl:=getAT0DsySel(mth
selection =yes): ATODsy

ii)däteATQDsy(sdl,No)

st:= getStodrnt (SSH): Student

&:= getATO (st, desaftki): ATO

sd2:= getATQDay (i, day): ATODay

i?<keATOD*y(id2,Yes)

4cB:=getAT ODsy (i, with dty >
d2.day) :ATOD*y

(ieleteMai(icB)

delete GroqjftcB)

deMgt(sd3)

delete Sectct(KB)

delet«AT0Dsy(id3)

f^petedforill ^
ATOD^cdgerthit
selected (fy ad of i.

Figure 46. Sequence Diagram "Select an ATO"

146

NEWATO

: Student :GUI

Select "Change ATO'i;)

Select "To enter t New
AT0"()

fcjratATOMamstion
(description)

: Application

s:=initSelect ATO GULScript

iddATO (st, description)

:Database

st:= gtfStudent(5electian=Yes): Student

iddATO (st, description)

t:=getATO(st, description) :AT0

iddATODiy (i, wih day=l)

4d:=getAT0D*y(4,withday=l)
:AT0D*y

g:=getGroupA]10: Group

iddGroup(&d, g)

s:=getSectorAl]0 :Sector

iddSectorfedjj)

t:=getT#A110 :Tmget

eddTgKadj)

lijsitdftiiläctiif

fopifcdftiijl lupt h

Figure 47. Sequence Diagram "New ATO'

147

COPY AN EXISTING ATO

s: Student :GUI

Select "Change AT O'Q

Select "To copy an ATO'O

'New ATO" (description!)

Select ATO To Copy"
(descriptions)

implication

s :=initCcfpyAT 0 GUI: Script

sekctATOToCopy(SSN,
descriptiml, descriptions) :Script

Descriptioalisfor]
newsrddesi
IccexistedATO

:Database

st:= getStncknt(selectian=Yes): Student

d:= getAT0(st)AT0

adl:= getATODay(al):ATO

st:=getStudent(SSN): Student

addATO(SSN, description!) ATO

t:=getAT O(st,descriptionl): AT 0

a':= getATO (st, descriptions): ATO

ad': =getATODay(a')ATODay

addATODay (a, ad'.day):ATODay

ad:getATODay (a, ad'.day):ATODay

g:=getGroup (ad'): Group

addGroup (g',ad): Group

t:=getTgget (ad'): Target

addTarget (t^d): Target

s:=getSector(ad'): Sector

addSector (ad^)

m:getMission (ad'): Mission

»ddMission (adjm)

SfeäanKtA.10

ÜlÄiHtMO

J&J64&H4]1C7»^

Kjiptffotl

3

Figure 48. Sequence Diagram "Copy an Existing ATO"

148

ERASE ATO

s: Student :GUI

Select "Delete mATO'Q

Select m ATO to EhseQ

:AppIication

j-iwtCajyATO&llLSaiit

eraseATO (SSN, description):
Script

stl:= getStudait(selectiari=Ye£):Stada t

:Datahase

il:= getATO(stl):ATO

idl:= getATODayftl):ATO

st:= getStudent (SSN) :9ndert

&:= getATO (st, description) :ATO

id:=getATODiy(ijdsy)

delete Group (ad)

delete Tgt (id)

delete Sector (ed)

deleteMsn (id)

deleteATODiy(ijdiy)

delete ATO (st^estription)

bpttdftxil

^

Ki^itdfeiiiAicov «f A

RijiitjdfculG»^ of »4™)

IlJ^llidfblillllJ» of tA

Siliitjdfcul&ctii of id*|
tnr?—! ^

|I»liilid6KllMi»»K ofid fci

Figure 49. Sequence Diagram of "Erase an ATO'

149

20 TARGETS WITH HIGHEST PRIORITY

s: Student :GUI

Select "20 Targets with
Highest Eriorit/i;)

: Application

Select Target Mmnation
(Tguta^ojfion)

s:=^OTgüHighest Priority
GDlScript

iDatabase

fflodJr/Tgt(SSH,tea5üim,
<ty,tgtfÜff, jricrity) :Script

ftaJHuwiikift i

stl:= getSta(ktt(5electio(n=Yes):Studat

il:=getATO(stl):ATO

4dl:= gttATQDtyftl):ATODy

t:= getTgKdl): Target

»2:= getATO(stl/ekctian=Yes):ATO

4d2:= getATODjy(42^1ectaori=Yes)
ATODsy

t2:= getTgt(id2|riürity<>0):ATÜDay

st:=getStndmt(SSH):Meri

a~getAT 0(st, desaiption): ATO

id-getATODay (a, diy): ATODsy

tydateTgt (d,tgüfcjriority):Tcget

iijdtlfeiJlAIO L

]jij*itat)i4l k

Jij44teii)ii]l L
lua*j>fAIODv l

Figure 50. Sequence Diagram "20 Highest Priority Targets"

150

PLAN ATO ENTER A NEW MISSION

s: Student :GUI

Select "Plant E±t Missions'!;)

Input Mission Enfarmatim
(MsnNbr, TaskType, Act Type
Base, Sector, Tgt,TgtCategoiy.
TgtSubcategoiy, Bomb Type,
NbrOfSarties, Package)

paxuxBte» utt optional ^

: Application

s :=irrilPl*nE<litMsn GUI: Scr^rt

enterMsn (ft, a, ad,msnNbr,
task Type, adt,Type,base,
sector, tgtNbr, tgtCatNbr,
tgtSubNbr, bomXypeNbr,
nbrOfSoxties, package)

id:= getATODay(a,selection=Yes)ATC

:Datahase

st:= getStudent(selection= Yes): Student

a:= getATO(st,selection=Yes):ATO

m:= getMsn(ad):Mission

m:=getMsn (adj'nsnNbr): Mission

exist:ched<Msnftn): Boolean

[exist] rupdsteMsn (^askType,
act Type, tiase, sector, tgtNbr,
tgtCatNbr, tgtSubNbr,
bomTypeNbr, nbrOfSctrties,
package)

[Hot exist] :addMsn(ad, MsnNbr,
Task Type, AcftType, Base,
Sector, Tgt, T^Category,
TgtStibcategory, Bomb Type,
NbrOfSarties, Pacl<age):Mission

Figure 51. Sequence Diagram "Plan or Edit Mission"

151

CANCEL MISSION

s: Student :GTJI : Application : Database

Select "Cancel Mission, or

Select **Missicttito Delet*"
(MsnHbor)

fciitUliae "Plm Edit Missions"

delet*Msr<SSK, description.,
dty , MsnHbQ: Script

stl:= getStudexit£5:electioxi*=Yes): Sender L

*!:= ectATOCstl):ATO

fcdl:= getATOEXyfal^ATO

m:= getJ5iasru;ejd.l):RJi?siccgi

st:=get Student (S SN}: Student

L:==getATOC«t, desa^ptiarO: ATO

d:=getATQI>ey (., day): ATODy

deleteXu&xt £ ad, msiiNbr)

dfci*axio

I lnfp**1öd.±bx*IL

Figure 52. Sequence Diagram "Cancel Mission"

CANCEL MISSIONS OF A PACKAGE

s: Student :GUI

Select "Ctncel Mission, or

Select "Pickage to Delete"
package)

: Application

£:=3nJt3>elettP«jcfetge GUI: Script

delet*Pick*ge(S SN-descr^tion,
4ay, repackage): Scnpt

:Database

stl:- getStuderEtCselection^Yes ^rStudei t.

al~ getATO(stl):ATO

*dl:= getATQPayCUfrATO

p:= gttMsr(Pl<gt;adl):]rCLeger

st:=get Student (S SN): Student

t:=getATO(st,de£cctJtion): ATO

d:=gietATODay (, day): ATODay

delcteMsxL (ad, m.pacitiige")'"

Mv«i&;v of AA <^t
La.uo ^bat parlay 1 _J

Figure 53. Sequence Diagram "Cancel Package of Missions'

152

FLY ATO

s: Student :GUI

Select "FV AT CTO

: Application

flyATO Q :Sci5>t

pt:= getStud«rtti;selectiati=Y*s): Student

r= getATO(st, selection Yes) ATO

update AT ODay (ad, No)

addATOday (ad, ad.day+1)

Tq>date AT ODay(ad', Yes)

:Database

ad:= getATODay(a,selectian=Yes)ATO

cle]eteMsriBad(ad,vrifli :ribrOf5orLies=0
Or TaskType=0 Or Acfl.Type=0)

Kx&H.BuLZ£vfi0v of&d
\

ad':=getATODay(a, ad.day+1): ATODay

m:=getMsr<ad):MissiQn

addMsn(ad', m)

g:=getgraup(ad): Group

addGroup (ad', g)

s:=getSectar(ad): Sector

addSectjor(ad',s)

t:=getTgt(ad): Target

addTgt (ad',t)

m:=getMsn(ad):XuIissio(n.

l:=ca]cluXsidosses$n):ittL.a]xay

updateMsrt(ad', m, 1)

update Group (ad', m.group, 1)

'update Sector (ad*, m.sectnr, 1)

update Target(ad', mtgt, 1)

F* r 41! M'ES bns *f «7^1

dft.

-*

-*

Figure 54. Sequence Diagram "Fly an ATO'

153

ESTIMATED RESULTS

s: Student :GUI

Stlect "Estämtt*d Results" 0

: implication

rep :=EstimaljedResults ()

id:= getATODiyi;*^electioQi=VeO:ATO

r:=er**£eR*part. C&d,"Estixu£*d
Results'^: R*rpart

m:=getMsnfrd):Miss:ban

: Database

st:= grtSDid«nt(stltctioiti=Yes):Studextt

x:~ getATO(st., selection Yes): AT 0

er:=calculste Estimate dRe suits $n):

updiieRepcfffl;r,m, er)

Figure 55. Sequence Diagram "Estimated Results"

MISSIONS WITHOUT SORTIES

s: Student :GUI

Select "FUgts Without
Sorties" Q

: Application

Tep:=fligÄsWähüUtSoxties Q
:SuJpL

sd:= getATOD«y(i^elertiom=Yes):ATO

:Database

st:= getStudenu;selection=Yes): Student

4:= getATO(st,selectiiCtti=Yes):AT 0

r—cresteRepcrtOd, 'Tli^rts
Wähout Sorties"): Report

m:= fetMsn(aJd,'w±h.sorties=Ö):
Mission

updateReport(r, m)

Hx<x>jy of id. -»efttO

Figure 56. Sequence Diagram "Flights Without Sorties"

154

INITIAL INFORMATION - DAILY SUMMARY

s: Student :GUI

Select "Ddfy- Sunmary"0

: Application

rep :=ddfySummary 0: Script

id:= getATODsi><a.,selectian=Yes):AT0

: Database

st:= getSliideni(selection=Yes):Student

a:= getATO(st,se]ectioti=Yes):ATO

r:=aeateRepart(ad, "Daify' Siimrimy"
): Report

m:= getMsn(ad): Mission

updateRepoxt(r, m)

Withy of iA

Figure 57. Sequence Diagram "Daily Summary"

INITIAL INFORMATION - LOGISTICS REQUIREMENTS

«: Student :GUI

Select "Logstics
Requirements''Q

rep:=Logi£ticsRequirem£nt£ ()
SuipL

: Application

»:= grtATO(st,selectinn=Yes):ATO

id:= g*tATODs9<i,selecEian=Yes):ATO

iDatahase

st:= getSnident(seIection=Yes): Student

r:=cre«teR*port(»d, "Lo©stic
Requirements"): Report

tu: =geiMsn(ad): Mission

t:= calcLogReq(m):Itil.array

updateRepanXr, m, lr)

Figure 58. Sequence Diagram "Logistic Requirements"
155

INITIAL INFORMATION - BLUE BASING SUMMARY

s: Student :GUI

Select "Blue Basing
Summary" Q

: Application

rep :=bhieBa£BigSumO: Script

ad:= getATOD*><a,selecticm=Yes):AT0

■•Database

st:= getStadent(seIectiarL=Yes): Student

a:= getATO<a,selectioa=Yes):AT 0

r:=createRepan.(ad, '^lu* Basing"
): Rjepoct

g:=getöroup(ad): Gtoup

updateReport<r, g)

Figure 59. Sequence Diagram "Blue Basing Summary'

INITIAL INFORMATION - "RECCE FOR TARGETS'

s: Student :GUI

Select "Recce &r Targets" Q

rep :=recceTgt(): Script

.•Application

id:= getATODao<4ielection=Yes):ATQ

: Database

st:= getStndent(selectic(iV=Yes): Student

a:= getAT0(st,selectic<n=YeO:AT0

r:=aeateRepo!ii(id, "Recce Target
of Day"): Report.

t-getT^ad): Target

TjpdateRepart(r,t;)

K&2ag&t>d£>x«]l

Figure 60. Sequence Diagram "Recce for Targets"
156

INITIAL INFORMATION - "ANALYSIS'

s: Student :GUI

Stiert. "Äna^sis"0

up :=ma]ysi5(): Script

: Application

id:= 8eLA.TOD^<»^«krtiori=Yes):AT0

:Datahase

st:= getStudertt(selecticin=Yes): Student.

i:= gttAT 0(st, selections Yes):AT 0

r:=a» *teRepart(ad, "Änafysis"):
an.

m:= getMsnt&d): Mission

sma:= cslculateAnafysisOii):Irit.ansy

P
updat!Repoit(r,m, ana)

P

Hieüicutf »f *A

Figure 61. Sequence Diagram "Analysis'

INITIAL INFORMATION - "SORTIES AVAILABLE'

«: Student :GUI

Select. "Sorties Available" Q

: Application

x*p:=sortie£ Available (): Script

«.:= getAT Q(st, selection^ Yep AT 0

icfc= g«tATOI>ay(a.,sel*cti(m=Yes)ATO

r:=<xeataRepart(ad, "Available
Sorties"): Report

: Datobase

st:= getSoider<ti;selectian=Yes):Student

^
g:= getGroupCad): Group

«s :=calcuist.e Scaties Available £n,g
):£it*ger

upd«±*Repoit<r, g, as)

^

Figure 62. Sequence Diagram "Sorties Available"
157

ACTUAL RESULTS - "CUMULATIVE SUMMARY'

s: Student :GUI

Select "Sorties BBfect"0

: Application

rep := Cumulative Sum():Saipt

:Database

st:= getStudeitt(selection=Yes):Stuntol

r.= getATO(st,selectiorL=Yes):ATO

id:= gjtATODy(M^QiMi=YK):ATO

r:=createRepait(ad, "Cumutoift
Summay"): Repent

»d' :=gstAT Odayft, with
(ky<=4d.day):AT0Diy

m:getMsn(&d): Mission

csl-calculate Cum wl(pi)i&L.3mty

upd*t*Rtpoit(i,m, csl): Report

g:=getGroup(&d'): ßroup

cs2:=c»lculateCum SmaP2|jg):irt.ffliiy

updateRepoit(r, g, cs2)

t-getT^ad'): Target

cs3-calculate Cum SumP3|£):lHt.a[r*y

q>dateReport(r?t, cs3): Report

K»i«(i*i&i4aA.ii

_J
& j 4lH*f »a of id'

2i

Bj-klGii^fofii'

Kidltipt ofii' D

u
Figure 63. Sequence Diagram "Cumulative Summary"

158

ACTUAL RESULTS - "ENEMY OVER BLUE BASES"

s: Student :GUI

Select "Riemy Over Bhi*
Bases" Q

: Application

rep :=enemyOverBJueB»s *s()
: Script

*:= ggtAT Q(st, selection^ Yes):AT O

id:= getATOD^^tlectian^Yes^ATO

: Database

st:- getStuderd#«l*ctian=Ye5): Student

r:=cre «teRepoxt(ad, "Binary Over
Blue Bases"): Repeat

b:=getB*ses(td): B*se

g~getGrtrup(*d): Group

eobb:=c*Icul&LeQiexizy,DvcrBlueB
ases(b,g):Ini*ger

updtl*Riepait(r, b, g, eobb)

^

|E*t***Af»**HBtw of*A ^

I*3«*«el£>i4jlCjK>'ap »f"b*

Figure 64. Sequence Diagram "Enemy over Blue Bases"

ACTUAL RESULTS - "GROUND WAR SUMMARY"

s: Student :GUI

Select" Ground War
Summery" O

: Application

rep:=^oundWirSummary<)
:SLI4JL

«.:= gttAT 0(0., selection^ Yep: AT 0

id:= getATODsy(t^electioin=yes):ATO

r:=cre ateRjepoxt(ad," Ground War
Summary"): Report

: Datahase

st:= getStiider(t<sek<lion=Yes):Stud«rrt

s:=getSector(id): Sector

m:=grtMa<4d): Mission

sl:=c*lcSector0ai): integer

upd«teRepoit(r, si): Report

25

Figure 65. Sequence Diagram "Ground War Summary"
159

ACTUAL RESULTS - "MEASURES OF MERIT'

s: Student :GUI

Select 'assures of Merit"0

.'Application

np :=mcur« Ofl£<rit (): Script

d:= getAT0D4$,selectiott=Yes):AT[

:Database

st:= getStodi^selecti(m=Yes):Msm

4:= getATO(st,sektion=Y«s)ATO

r:=CK4teReport(id, "Measures of
Merit"): Report

d:=getAT0day(4, with day
smaller than the user ipLdty):
ATGDiy

m:=getMsn(ad): Mission

id' :=getAT Odayft, wöt day =d.
dsy+ lattd smaller than the user
irptd4y):ATÜDay

m':=getMsri(ad'): Mission

oi:=calcukte OverallMcstor
s£n,m'):it array

updateReport(r, oi,m): Report

ai

JipiitAfoidL
Miffi» of tu.

Figure 66. Sequence Diagram "Measures of Merit"

160

ACTUAL RESULTS - "YESTERDAY LOSSES BY AIRCRAFT TYPE"

s: Student :GUI

Select "Yesterday Losses By
Aircril"0

: Application

rep:^estenl«yLo$sesByAcft (
):Soft

3

st:= getStuto(selectiflrL=Yes):Studeri

.:= getATO(st,selecticn=Ye$):ATO

4d:= getATO(^ekctm=Yes):ATO

r:=cre£eRepoit(ad, "Yestenty Losses
By Aimsliype"): Report

ic£:getAdTjpe:Aiixnl

m:=getMsri(a<l,withadtType:

ici):Mission

id':=getATOD^(i,wüi djy=id.diy-
l):AT0Dy

m':=getMsn(id',willimsnl1bi=
mmsnNbr) :Mission

losFcelcuMeLosses^i^t^Integer

iipdateReport(r, los, m): Report

2

hi ;

Miffing

Figure 67. Sequence Diagram "Yesterday Losses By Aircraft Type'

161

ACTUAL RESULTS - "YESTERDAY LOSSES BY TASK TYPE'

s: Student :GUI

Select "Yesterday Losses By
Task Type "0

: Application

rep :=yesterd>yLossesByTssl!
Type (): Script

:Datahase

st:= grtStudem<selection=Yes):Student

i:= getATO(st.,seleaiim=Yes):ATO

«d:= grtAT0(»^fl»ction=Yes):AT0

r:=txeat*Repo!T(ad, "Yesterday losses
By Task Type"): Report

^
tsk:getTaskType:TasltType

m:=getMsn(td,wÄh taskType =

ad':=getATODayt;a,wäh dsy=*d.d^-
1): ATODgy

m' :=getMsn(»d% w&hmsnNb r

los :=cilculateLoss«s(Jm.^2i'):Intega:

■updMjtRjgpcnx(rr los, m): Repent

^

iZE* J

Figure 68. Sequence Diagram "Yesterday Losses By Task Type'

MAP

g: Strident :GUI : Application iDatabase

Select "bJb&s" C)

Select. "Are* MJQ)"C)

s :=JrutSel»ctliuIaps O^Scnpt

Da*5>:= seltctJuItpQaaapNbr) :

ua:= getluIapC }:Map

map — g*tia*p$SMpNbr) : Map

1 **!«*.* d.*> i-«uf-

Figure 69. Sequence Diagram of "Map"
162

SEND ATO

s: Student :GUI

SelectATOToSend"
(descriptions)

Select "Change ATO'D

Select "To send an ATO'D

'New ATO"(descriptionl)

: Application

MialiK "Send ATO GUT

sel*ctATOToSend(SSN,
desaiptionl,cfescriritian2): Script

DesaptimlK ftujk
ATO name in War
College Sever and
ilescrptionQforseii
ATO.

exist:check Students SN):Eoolem

: Server Database

jt:= getStudent(selectM(n=Yes):Student

4l:=getAT0(st)AT0

adl:= getAT0Day(a):AT0

[exJstl:addStudent(SSN): Student

st:=getSludent(SSN): Student

K!(1AT0(SSN, description!) ATO

a:=getAT 0(st jdescriptionl) AT 0

a':= getATO (st,descriptions): ATO

ad': =getATODay (a'):ATODay

addAT ODay (a, ad' .day) AT ODay

a&getATODay (a, ad'.day)ATODay

g:=getßrciup (ad'): öroup

addGroup (g',ad): Group

t:=getTarget (ad'): Target

addTarget (t^ad): Target

s:=getSector(ad'): Sector

addSector (ad,s)

m:getMJssion(ad'): Mission

iddMission (ad^n)

StJiltrdfcliU
8tdtaKtMQ

If srndert exist I
continue "wftinext
step

♦fill' I J

Figure 70. Sequence Diagram "Send ATO'

163

APPENDIX C ABBREVIATIONS ACRONYMS DEFINITIONS

Abbre\ iation Word Explanation

Active X Transition from OLE of Microsoft

Adaptability The ease with which software can be modified to

meet new requirement [DODSTR 92, p.47]

Cohesion The manner and degree to which the tasks

performed by a single component are related to one

another

Coupling IThe degree of data or control connectivity

between different assets of a software system.

Because coupled assets cannot be separated from

each other easily and used alone, the scope of reuse

is narrowed.

2. The manner and degree of interdependence

between components.

DCE Distributed

Computing

Environment

DCOM Distributed

Component Object

Model

4GL Four Generation

Languages

Interoperability Measure of the ability to share information between

different systems.

NSDM National Security

OS Operating System

OLE Object Linking

and Embedding

164

Abbreviation Word Explanation

Reengineering The process of examining and altering an existing

software component in order to reformat or

configure it. Reengineering is comprised of the

subprocesses of reverse engineering, retargeting,

restructuring, redocumentation, and forward

engineering.

Stub COM or CORBA Mechanism that allow seamless

access to remote objects

AI Air Interdiction Air operations conducted to destroy, neutralize, or

delay the enemy's military potential before it can be

brought to bear effectively against friendly forces

at such distance from friendly forces that detailed

integration of each air mission with the fire and

movement of friendly forces is not required. (Air

War College Glossary.)

ATO Air Task Order

AWACS Airborne Warning

and Control

System

BAI Battlefield Air

Interdiction

BAI was a subset of Air Interdiction. Missions,

which are tasked against enemy forces, and/or

resources that are in a position to directly influence

and affect ongoing land operations, but which are

not yet directly engaged in combat. These missions

are included in Interdiction in the new AFM 1-1

and BAI no longer is an Air Force mission. (Air

War College Glossary.)

BDA Battlefield

Damage

165

Abbreviation

CAS

C3

DCA

DSA

EW

FEBA

OCA

Recce

SAM

SEAD

Word

Assessment

Close Air Support

Command,

Control, and

Communication

Defense

Communications

Agency

Defense

Suppression Area

Early Warning

Forward Edge of

the Battle Area

Offensive

Counterair

Reconnaissance

Surface to Air

Missile

Suppression of

Enemy Air

Defense

Sortie

Explanation

The area EF-111 or Wild Weasel aircraft

employing stand-off jamming or suppression would

be responsible for negating enemy capability. They

would not penetrate enemy territory. (Air War

College Glossary.)

The foremost limits of a series of areas in which

ground combat units are deployed, excluding the

areas in which the covering or screening forces are

operating, designated to coordinate fire support, the

positioning of forces, or the maneuver of units. (Air

War College Glossary.)

In air operations, an operational flight by one

166

Abbreviation Word Explanation

aircraft. (Air War College Glossary.)

UTC Unit Type Code A five-character alphanumeric code that uniquely

identifies each type unit of the Armed Forces. (Air

War College Glossary.)

167

BIBLIOGRAPHY

Books

Berzins and Luqi. Software Engineering with Abstractions. Naval Postgraduate School,

USA, 1990.

Elmasri and Navathe, Fundamentals of Database Systems, USA, 1994.

Reaz Hoque and Tarun Sharma, WEB Components, NY, USA, 1998.

Jason Pritchard, COM and CORBA Side by Side, USA, 1999.

Frederick P. Brooks, The Mythical Man-Month, University of North Carolina, USA,

September 1995.

Dirk Slama, Jason Garbis, Perry Rüssel, Enterprise CORBA, USA, 1999.

Robert Orfali and Dan Harkey, Client/Server Programming with JAVA and CORBA,

USA, 1998.

Grady Booch, James Rumbaugh, Ivar Jacobson, The Unified Modeling Language User

Guide, Rational Software Corporation, USA, February 1999.

Graig Larman, Applying UML and Patterns, USA, 1997.

Hans-Eric Ericsson and Magnus Penker, UML Toolkit, USA, 1998.

Desmond F. D' Souza and Alan Cameron Wills, Object, Components and Frameworks

with UML, USA, October 1998.

Ivar Jacobson, Martin Griss, Patrik Jonsson, Software Reuse Architecture, Process and

Organization for Business Success, USA, 1997.

Wayne C. Lim, Managing Software Reuse, A Comprehensive Guide to Strategically

Reengineering the Organization for Reusable Components, USA, 1998.

168

Danny Ayers, Hans Bergsten, Michael Bogovich, Jason Diamond, Matthew Ferris, Marc

Fleury, Ari Halberstadt, Paul Houle, Piroz Mohseni, Andrew Patzer, Ron Phillips,

Sing Li, Krishna Vedati, Mark Wilcox, Stefan Zeiger, Professional JAVA Server

Programming, USA, 1999.

Michael Blaha and William Premerlani, Object-Oriented Modeling and Design for

Database Applications, USA, 1998.

W. Keith Edwards, Core JINI, USA, September 1999.

Technical Papers

Sun Microsystems. "JINI Architecture Specification", Version 1.0.1 November 1999.

Sun Microsystems. "JINI Distributed Event Specification", Version 1.0.1 November
1999.

Sun Microsystems. "JAVASPACES Specification", Version 1.0.1 November 1999.

Sun Microsystems. "JINI Technology Glossary", Version 1.0.1 November 1999.

Sun Microsystems. "JINI Transaction Specification", Version 1.0.1 November 1999.

Sun Microsystems. "JINI LookupService Specification", Version 1.0.1 November 1999.

Sun Microsystems. "JINI Distributed Leasing Specification", Version 1.0.1 November
1999.

Sun Microsystems. "JINI Discovery and Join Specification", Version 1.0.1 November
1999.

Sun Microsystems. "JINI Discovery Utilities Specification", Version 1.0.1 November
1999.

Sun Microsystems. "JINI Entry Utilities Specification", Version 1.0.1 November 1999.

Sun Microsystems. "JINI Lookup Attribute Schema Specification", Version 1.0.1
November 1999.

169

Gopalan Suresh Raj. "A Detailed Comparison of CORBA, DCOM and Java/RMI" 21
September 1998.

Kurt Wallnau. Software Engineering Institute. "Common Object Request Broker
Overview Architecture". 10 Janl997.
Ed Morris,Emil Litvak, Software Engineering Institute "Component Object Model
(COM), DCOM, and Related Capabilities" 23 Jun 1997.

Internet Sites

"CORBA." Object Management Group. Available [Online]:
http://cgi.omg.org/corba/beginners.html.

"CORBA." Douglas C. Schmidt. Available [Online]:
http://www.cs.wustl.edu/~schmidt/.

"Interoperability Showcase." Distributed System-Technology Center-CORBANet.
Available [Online] :_http://corbanet.dstc.edu.au/html/arch.html.

" COM-DCOM and Related Cababilities." Software Engineering Institute. Available
[Online]: http://www.sei.cmu.edu/str/descriptions/com.html.

"JINI Specifications." Sun Microsystems Corporation. Available [Online]:
http://www.sun.com/jini/specs/index.html.

"Component Object Specification." Microsoft Resources. Available [Online]:
http ://www .microsoft. com/Com/resources/comdocs. asp.

170

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Dan Boger
Chairman, Computer Science Code CS
Naval Postgraduate School
833 Dyer Road
Monterey, CA 93943-5118

Dr. Man-Tak Shing
Computer Science Department, Code CS/Sh
Naval Postgraduate School
833 Dyer Road
Monterey, CA 93943-5118

5. Major Leroy A. Jackson
TRAC-MTRY
Naval Postgraduate School
166 Bouldry Road
Monterey, CA 93943-0692

6. Major Antonios Chalakatevakis.
Moshopoulou 7-9
Erithros, 11526
Athens, Greece

171

